Product data sheet

Characteristics

ATV71HU22Y

variable speed drive ATV71-2.2kW-690V -
EMC filter-graphic terminal

Green
Premium

Product availability: Non-Stock - Not normally stocked in distribution facility

Torque accuracy	+/- 15% in open-loop mode, without speed feedback $+/-5 \%$ in closed-loop mode with encoder feedback
Transient overtorque	$170 \%+/-10 \% 60$ s every 10 minutes $220 \%+/-10 \% 2 \mathrm{~s}$
Braking torque	<= 150% with braking or hoist resistor 30% without braking resistor
Synchronous motor control profile	Vector control without speed feedback
Regulation loop	Adjustable PI regulator
Motor slip compensation	Adjustable Suppressable Automatic whatever the load Not available in voltage/frequency ratio (2 or 5 points)
Diagnostic	Drive voltage 1 LED red)
Output voltage	<= power supply voltage
Insulation	Electrical between power and control
Type of cable for mounting in an enclosure	With a NEMA Type1 kit 3 UL 508 cable $104{ }^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, copper $75^{\circ} \mathrm{C} / \mathrm{PVC}$ With an IP21 or an IP31 kit 3 IEC cable $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, copper $70^{\circ} \mathrm{C} / \mathrm{PVC}$ Without mounting kit 1 IEC cable $113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$, copper $70^{\circ} \mathrm{C} / \mathrm{PVC}$ Without mounting kit 1 IEC cable $113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$, copper $90^{\circ} \mathrm{C} / \mathrm{XLPE} / \mathrm{EPR}$
Electrical connection	Terminal $2.5 \mathrm{~mm}^{2}$, AWG 14 Al1-/AI1+, AI2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR) Terminal 50 mm², AWG 1/0 L1/R, L2/S, L3/T, U/T1, V/T2, W/T3, PC/-, PO, PA/+, PA, PB)
Tightening torque	```5.31 Lbf.In (0.6 N.m) Al1-/AI1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR) 106.21 Ibf.in (12 N.m), 102.2 lb.in L1/R, L2/S, L3/T, U/T1, V/T2, W/T3, PC/-, PO, PA/+, PA, PB)```
Supply	Internal supply for reference potentiometer (1 to 10 kOhm) 10.5 V DC +/- 5%, $<10 \mathrm{~mA}$ overload and short-circuit protection Internal supply 24 V DC $21 \ldots 27 \mathrm{~V}$), <200 mA overload and short-circuit protection
Analogue input number	2
Analogue input type	Al1-/AI1+ bipolar differential voltage +/- 10 V DC 24 V max 11 bits + sign Al2 software-configurable current $0 . . .20 \mathrm{~mA} 242$ Ohm 11 bits Al2 software-configurable voltage $0 . . .10 \mathrm{~V}$ DC 24 V max 30000 Ohm 11 bits
Input sampling time	```2 Ms +/- 0.5 ms Al1-/Al1+) - analog 2 Ms +/- 0.5 ms Al2) - analog 2 Ms +/- 0.5 ms LI1...LI5) - discrete 2 ms +/- 0.5 ms LI6)if configured as logic input - discrete```
Response time	$<=100 \mathrm{~ms}$ in STO (Safe Torque Off) AO1 $2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ analog R1A, R1B, R1C $7 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ discrete R2A, R2B $7 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ discrete
Absolute accuracy precision	$\begin{aligned} & \text { +/- } 0.6 \% \mathrm{Al} 1-/ \mathrm{Al} 1+\text {) for a temperature variation } 60^{\circ} \mathrm{C} \\ & +/-0.6 \% \mathrm{Al} 2) \text { for a temperature variation } 60^{\circ} \mathrm{C} \\ & \text { +/- } 1 \% \mathrm{AO} 1) \text { for a temperature variation } 60^{\circ} \mathrm{C} \end{aligned}$
Linearity error	$\begin{aligned} & \text { +/- } 0.15 \% \text { of maximum value } \mathrm{Al} 1-/ \mathrm{Al} 1+, \mathrm{Al} 2) \\ & +/-0.2 \% \mathrm{AO} 1) \end{aligned}$
Analogue output number	1
Analogue output type	AO1 software-configurable logic output 10 V 20 mA AO1 software-configurable current $0 . . .20 \mathrm{~mA} 500$ Ohm 10 bits AO1 software-configurable voltage $0 . . .10 \mathrm{~V}$ DC 470 Ohm 10 bits
Discrete output number	2
Discrete output type	Configurable relay logic R1A, R1B, R1C) NO/NC - 100000 cycles Configurable relay logic R2A, R2B) NO - 100000 cycles
Minimum switching current	3 mA 24 V DC configurable relay logic
Maximum switching current	R1, R2 2 A 250 V AC inductive, cos phi $=0.4$ R1, R2 2 A 30 V DC inductive, cos phi $=0.4$ R1, R2 5 A 250 V AC resistive, cos phi $=1$ R1, R2 5 A 30 V DC resistive, cos phi $=1$
Discrete input number	7
Discrete input type	LI1...LI5 programmable 24 V DC level 1 PLC 3500 Ohm LI6 switch-configurable 24 V DC level 1 PLC 3500 Ohm LI6 switch-configurable PTC probe 0... 61500 Ohm PWR safety input 24 V DC 1500 Ohm ISO 13849-1 level d
Discrete input logic	Negative logic (sink) LI1...LI5), > 16 V , < 10 V Positive logic (source) LI1...LI5), < 5 V , > 11 V Negative logic (sink) LI6)if configured as logic input, > $16 \mathrm{~V},<10 \mathrm{~V}$ Positive logic (source) LI6)if configured as logic input, $<5 \mathrm{~V},>11 \mathrm{~V}$

Acceleration and deceleration ramps	Automatic adaptation of ramp if braking capacity exceeded, by using resistor Linear adjustable separately from 0.01 to 9000 s S, U or customized
Braking to standstill	By DC injection
Protection type	Against exceeding limit speed drive Against input phase loss drive Break on the control circuit drive Input phase breaks drive Line supply overvoltage drive Line supply undervoltage drive Overcurrent between output phases and earth drive Overheating protection drive Overvoltages on the DC bus drive Short-circuit between motor phases drive Thermal protection drive Motor phase break motor Power removal motor Thermal protection motor
Insulation resistance	> 1 mOhm 500 V DC for 1 minute to earth
Frequency resolution	Analog input $0.024 / 50 \mathrm{~Hz}$ Display unit 0.1 Hz
Communication port protocol	CANopen Modbus
Connector type	1 RJ45 on front face)Modbus 1 RJ45 on terminal)Modbus Male SUB-D 9 on RJ45CANopen
Physical interface	2-wire RS 485 Modbus
Transmission frame	RTU Modbus
Transmission rate	4800 bps, 9600 bps, 19200 bps, 38.4 Kbps Modbus on terminal 9600 bps, 19200 bps Modbus on front face $20 \mathrm{kbps}, 50 \mathrm{kbps}, 125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}$, 1 Mbps CANopen
Data format	8 bits, 1 stop, even parity Modbus on front face 8 bits, odd even or no configurable parity Modbus on terminal
Number of addresses	1... 127 CANopen 1... 247 Modbus
Method of access	Slave CANopen
Marking	CE
Operating position	Vertical +/- 10 degree
Height	16.54 in (420 mm)
Depth	9.29 in (236 mm)
Width	9.45 in (240 mm)
Net weight	$66.14 \mathrm{lb}(\mathrm{US})(30 \mathrm{~kg}$)
Option card	Communication card CC-Link Controller inside programmable card Communication card DeviceNet Communication card Ethernet/IP Communication card Fipio I/O extension card Communication card Interbus-S Interface card for encoder Communication card Modbus Plus Communication card Modbus TCP Communication card Modbus/Uni-Telway Overhead crane card Communication card Profibus DP Communication card Profibus DP V1

Environment

Noise level	59.9 dB 86／188／EEC
Dielectric strength	3110 V DC between earth and power terminals 5345 V DC between control and power terminals
Electromagnetic compatibility	$1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 IEC 61000－4－5 Conducted radio－frequency immunity test level 3 IEC 61000－4－6 Electrical fast transient／burst immunity test level 4 IEC 61000－4－4 Electrostatic discharge immunity test level 3 IEC 61000－4－2 Radiated radio－frequency electromagnetic field immunity test level 3 IEC 61000－4－3 Voltage dips and interruptions immunity test IEC 61000－4－11
Standards	EN 61800－3 environments 1 category C3 EN 55011 class A group 2 EN 61800－3 environments 2 category C3 EN／IEC 61800－3 EN／IEC 61800－5－1 IEC 60721－3－3 class 3C2 UL Type 1
Product certifications	CSA NOM 117 C－Tick UL GOST
Pollution degree	$\begin{aligned} & 2 \text { EN/IEC 61800-5-1 } \\ & 3 \text { UL } 840 \end{aligned}$
IP degree of protection	IP20 on upper part without blanking plate on cover EN／IEC 60529 IP20 on upper part without blanking plate on cover EN／IEC 61800－5－1 IP21 EN／IEC 60529 IP21 EN／IEC 61800－5－1 IP41 on upper part EN／IEC 60529 IP41 on upper part EN／IEC 61800－5－1 IP54 on lower part EN／IEC 60529 IP54 on lower part EN／IEC 61800－5－1
Vibration resistance	$1 \mathrm{gn} 13 \ldots .200 \mathrm{~Hz}) \mathrm{EN} / \mathrm{IEC} 60068-2-6$ 1.5 mm peak to peak $3 \ldots 13 \mathrm{~Hz}$ ）EN／IEC 60068－2－6
Shock resistance	15 gn 11 ms EN／IEC 60068－2－27
Relative humidity	5．．． 95 \％without condensation IEC 60068－2－3 $5 . . .95$ \％without dripping water IEC 60068－2－3
Ambient air temperature for operation	$14 \ldots 122{ }^{\circ} \mathrm{F}\left(-10 \ldots 50^{\circ} \mathrm{C}\right)$ without）
Ambient air temperature for storage	$-13 \ldots 158{ }^{\circ} \mathrm{F}\left(-25 \ldots 70^{\circ} \mathrm{C}\right)$
Operating altitude	$<=3280.84 \mathrm{ft}(1000 \mathrm{~m})$ without 3280．84．．． $7414.7 \mathrm{ft}(1000 \ldots 2260 \mathrm{~m}$ ）with current derating 1% per 100 m

Ordering and shipping details

Category	$22130-$ ATV71－1／2 THRU 5HP DRIVES
Discount Schedule	CP4C
GTIN	00785901443148
Package weight（Lbs）	$30.39 \mathrm{~kg} \mathrm{(67} \mathrm{lb(US))}$
Returnability	No
Country of origin	FR

Offer Sustainability

Sustainable offer status	Green Premium product
California proposition 65	WARNING：This product can expose you to chemicals including：Lead and lead compounds which is known to the State of California to cause Carcinogen \＆Re－ productive harm．For more information go to www．p65warnings．ca．gov
REACh Regulation	廌REACh Declaration
EU RoHS Directive	Pro－active compliance（Product out of EU RoHS legal scope）EU RoHS Decla－ ration
Mercury free	Yes
RoHS exemption information	圂Yes
China RoHS Regulation	囫China RoHS Declaration

Environmental Disclosure	Product Environmental Profile
Circularity Profile	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins.
WEEE	

Product data sheet
Dimensions Drawings

UL Type 1/IP 20 Drives

Dimensions without Option Card

Dimensions in mm

a	b	c	G	H	K	\varnothing
240	420	236	206	403	11	6

Dimensions in in.

a	b	c	G	H	K	\varnothing
9.44	16.54	9.29	8.11	15.87	0.45	0.23

Dimensions with 1 Option Card (1)

Dimensions in mm

a	c1	G	H	K	\varnothing
240	259	206	403	11	6

Dimensions in in.

a	c1	G	H	K	\varnothing
9.44	10.20	8.11	15.87	0.45	0.23

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

Dimensions with 2 Option Cards (1)

Dimensions in mm

a	c2	G	H	K	\varnothing
240	282	206	403	11	6

Dimensions in in.

a	c2	G	H	K	\varnothing
9.44	11.10	8.11	15.87	0.45	0.23

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.
Install the unit vertically:

- Avoid placing it close to heating elements
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Clearance

Mounting Types
Type A Mounting

Type B Mounting

Type C Mounting
$\frac{\mathrm{mm}}{\mathrm{in} .}$

By removing the protective blanking cover from the top of the drive, the degree of protection for the drive becomes IP 20.
The protective blanking cover may vary according to the drive model (refer to the user guide).
The protective blanking cover must be removed from ATV 71P $\cdots \cdot N 4 Z$ drives when they are mounted in a dust and damp proof enclosure.

Specific Recommendations for Mounting the Drive in an Enclosure

Ventilation

To ensure proper air circulation in the drive:

- Fit ventilation grilles.
- Ensure that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (refer to the product characteristics).

- Use special filters with IP 54 protection.
- Remove the blanking cover from the top of the drive.

Dust and Damp Proof Metal Enclosure (IP 54)

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.
This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

Three-Phase Power Supply with Upstream Breaking via Contactor

A1 ATV71 drive
KM1 Contactor
L1 DC choke
Q1 Circuit-breaker
Q2 GV2 L rated at twice the nominal primary current of T1
Q3 GB2CB05
S1, XB4 B or XB5 A pushbuttons
S2
T1 100 VA transformer 220 V secondary
(1) Line choke (three-phase); mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(5) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(6) Optional DC choke for ATV71H $\cdot \bullet$ M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(7) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(8) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 1, IEC/EN 61508 Capacity SIL1, in Stopping Category 0 According to IEC/EN 60204-1

A1 ATV71 drive
L1 DC choke
Q1 Circuit-breaker
Q2 Switch disconnector (Vario)
(1) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(5) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(6) Optional DC choke for ATV71H $\cdots \cdot M 3$, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(7) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(8) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 0 According to IEC/EN 60204-1

A1 ATV71 drive
A2 Preventa XPS AC safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal" function for several drives on the same machine. In this case, each drive must connect its PWR terminal to its +24 V via the safety contacts on the XPS AC module. These contacts are independent for each drive.
F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 contacts
S2 XB4 B or XB5 A pushbutton
(1) Power supply: 24 Vdc or Vac, 48 Vac, 115 Vac, 230 Vac.
(2) S2: resets XPS AC module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(3) Requests freewheel stopping of the movement and activates the "Power Removal" safety function.
(4) Line choke (three-phase), mandatory for and ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(5) The logic output can be used to signal that the machine is in a safe stop state.
(6) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(7) Fault relay contacts. Used for remote signalling of the drive status.
(8) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(9) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09 \mathrm{in} .$, maximum length $15 \mathrm{~m} / 49.21 \mathrm{ft}$. The cable shielding must be earthed.
(10) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(11) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(12) Software-configurable current ($0 \ldots .20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(13) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 1 According to IEC/EN 60204-1

Three-Phase Power Supply, High Inertia Machine

A1 ATV71 drive
A2 Preventa XPS ATE safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal"
(5) safety function for several drives on the same machine. In this case the time delay must be adjusted on the drive controlling the motor that requires the longest stopping time. In addition, each drive must connect its PWR terminal to its +24 V via the safety contacts on the XPS ATE module. These contacts are independent for each drive.
F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 N/C contacts
S2 Run button
(1) Power supply: 24 Vdc or Vac, $115 \mathrm{Vac}, 230$ Vac.
(2) Requests controlled stopping of the movement and activates the "Power Removal" safety function.
(3) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(4) S2: resets XPS ATE module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(5) For stopping times requiring more than 30 seconds in category 1, use a Preventa XPS AV safety module which can provide a maximum time delay of 300 seconds.
(6) The logic output can be used to signal that the machine is in a safe state.
(7) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(8) Fault relay contacts. Used for remote signalling of the drive status.
(9) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(10) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09$ in., maximum length $15 \mathrm{~m} / 49.21 \mathrm{ft}$. The cable shielding must be earthed.
(11) Logic inputs LI1 and LI2 must be assigned to the direction of rotation: LI1 in the forward direction and LI2 in the reverse direction.
(12) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(13) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(14) Software-configurable current ($0 \ldots .20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(15) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type. For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}$), interpolate between 2 curves.

X Switching frequency
(1) Mounting type

Above $50^{\circ} \mathrm{C}$, the drive should be fitted with a control card fan kit.

