Main applications

- Industrial furnaces for heat treatments, metallurgy
- Fusion, sinterization, nitriding furnaces
- Furnaces for ceramics and precious metals
- Dryers
- Heating systems with monophase and triphase transformers
- Heating systems with Super Kanthal™ resistors
- Heating systems with Silicon carbide resistors

CONTROL FUNCTIONS

To adapt to the multiple possible applications, even the Power module firing choice can be set on the product; you can choose between various types of
"Zero crossing" with fixed cycle times or optimised for linear loads and high heat inertia systems, or for fast firing modes, like the Half Single Cycle and Phase angle, to better control non linear loads like SWIR infrared lamps, Super Kanthal and Silicon carbide heating elements or single and three-phase transformer primaries directly. Soft Start, current limits settable for both peak values and RMS values and closed loop Voltage, Current and Power feedback algorithms complete the control. On some models it is possible to have the option of reading a thermocouple to realize alarm thresholds on critical points of the system.

Main features

- Current capacities from 40 A up to 600 A, 480 Vac, 600 Vac, 690 Vac
- Synchronised Single-Bi-Three phase configurations
- Firing mode configurable in "Zero crossing" (Fixed Cycle, Burst Firing, Half Single Cycle) and "Phase angle"
- Analogue control inputs configurable in Volt, $m A$, potentiometer and digital "PWM"
- Settable retransmission analogue outputs
- Optional inputs from external TA and TV
- Current limits
- Feedback V, V2, I, I2, P
- Total and partial interrupted load alarms with Relay outputs
- Built-in fuses
- Temperature sensors on Power terminals and air inlet
- Fieldbus: PROFINET, Profibus, Modbus TCP/ RTU, Ethernet IP, EtherCAT, Canopen
- Configuration keyboard and monitor
- PC configuration tool with configuration wizard (SMART)
- CE, UL, CSA certifications and SCCR UL 508 100KA approvals

DIAGNOSTICS, PREVENTIVE MAINTENANCE AND ALARMS

Some of the strengths of this range include the multiple diagnostic functions, preventive maintenance and alarms for current, voltage and temperature.

Current

- Total and partial interrupted load alarm with alarm threshold auto-learning.
- SCR short circuit alarm.
- Short circuit or surge load alarm.
- Broken internal fuse alarm.

Voltage

- No voltage alarm.
- Incorrect rotation of the three phases alarm in three-phase systems.
- Unbalanced three-phase line alarm

Temperature

- Power module temperature monitoring with automatic off in the event of overheating alarm.
- Temperature measurement of all Power terminals with loosened connection alarm.
- Fan output temperature measurement for cooling efficiency diagnostics.
- No fan power alarm.

CONFIGURATIONS

Optimal parameter settings are possible through a local programming keyboard, the GFW-OP, that also manages variable monitor functions, or PC configuration tool, GF-express, that offers simple and fast configuration wizards via the "Smart Configuration" menu. You can create and save entire parameter recipes and easily copy them to other devices with GF-express in addition to monitoring parameters and viewing them in a graph with the oscilloscope function.

FIELDBUS

A Modbus RTU port is always available, for both connections with the configuration tool and with HMI or PLC devices with Modbus Master communications. An extensive range of Fieldbus options let you add GFW controllers in control architectures with the most popular PLC brands, letting you access any device variable.

MODELS

General features:

Nominal voltage: 480 or 600 V or 690 V Nominal current: 40, 60, 100, 150, 200, 300 Arms @ $40^{\circ} \mathrm{C}$ in continuous service. Nominal current: 400, 500, 600 Arms @ $50^{\circ} \mathrm{C}$ in continuous service.

Isolation HV

Rated isolation voltage input/output: 4000 Vac

INPUTS

Control analog input

N. 1 input (for model GFW40-300A)
N. 3 inputs (for model GFW400-600A)

Voltage: 5Vdc, 10Vdc
Current: 0...20mA, 4...20mA
Potentiometer: From $1 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$ (autofed by 5V from GFW)

Digital inputs

N. 3 inputs (for model GFW40-300A)
N. 4 inputs (for model (GFW400-600A)

Range $5-30 \mathrm{~V}$ max 7 mA
PWM input control: 0,03...100Hz
(Configurable Features).

PID inputs

(Optional, only for GFW40-300A)
Configurable with TC input: type J, K, R,
S, T, custom, PT100 RTD input
Voltage input: $60 \mathrm{mV}, 1 \mathrm{~V}$
Current input: 0-20 mA, 4-20mA

TC AUX inputs

(Optional, only for GFW40-300A)
N. 4 configurable input: type TC J, K, R, S,

T , or 60 mVdc Linear input

Voltage line range

Range: 90V... V_nominal _product
Frequency: $50-60 \mathrm{~Hz}$

Current load range:

Range: 0... 2*|_nominal_product
External current transformer inputs:
(optional, only for GFW400-600A)
3 5Aac inputs(read f.s. settable with SW configuration parameter)

Key HB:

HB alarm calibration ON or reset memory alarms.

OUTPUTS

Power output, function mode:
ZC - Zero Crossing fixed cycle time
BF - Burst Firing
(Zero-crossing minimum optimize cycle time)

HSC - Half Single Cycle

(Zero-crossing corresponds to Burst Firing that manages single semi-cycles of conduction or stop cycles.)
PA - Phase Angle

Potentiometer power outputs:

$5 \mathrm{Vdc}, 10 \mathrm{~mA}$ max for models
GFW 40-250A
$5 \mathrm{Vdc}, 30 \mathrm{~mA}$ max for models
GFW 400-600A

ALARM OUTPUTS

For models GFW 40-250A
2 Relays NO contact (OUT9-10)
4 Optional outputs - Relay, Triac,
Continuous, Digital (OUT 5-6-7-8)

For models GFW 400-600A

2 Relays with changeover contact C-NO-NC (OUT9-10)
4 Optional outputs - Relay, Digital
(OUT 5-6-7-8)
3 Optional analog outputs $10 \mathrm{~V} / 20 \mathrm{~mA}$
12 bit (OUT 5-6-7)

Thermic Dissipation

GFW models dissipate thermic power based on load current:
Pdissipation = I_load_Arms * 1.3V (W)

Protective fuse

Installed inside product (optional)

LED

N. 8 LEDs state indicator (Configurable)

Modbus RS485 Serial (PORT1)

This lets you connect the GFW to a PLC or HMI via a simple RJ10 telephone wire by using an RS485 serial line with Modbus protocol. The Baud-Rate is configurable from 1200 Baud to 115000 Baud.
A pair of rotary-switches lets you quickly assign the node address.
A dip-switch lets you internally insert the line termination resistance.

FieldBus Serial PORT2 (optional)

At the bottom of the device (front for GFW400/600A) you can insert one of the following optional.
For GFW 40-250A and GFW 400-600A models: Modbus RTU, Modbus TCP, Profibus DP, PROFINET, CanOpen, Ethernet IP, EtherCAT.

GFW-OP Serial Keypad

A DB9 connector lets you connect the GFW to the Gefran GFW-OP keypad (optional) for parameter configuration and device supervision.

Installation notes:

- To assure maximum reliability, it is essential to install the unit correctly in the panel in order to guarantee adequate heat exchange between the heat sink and the room under natural convection conditions. - Install the unit vertically (max 10° inclination from vertical axis).
- Vertical distance between unit and panel wall >100mm
- Use the high speed fuses specified in the catalog
- Applications with solid state power units must also include an automatic safety switch to cut out the load power line.

Limits of use

- Dissipation of thermic power on the device with restraints on the ambient temperature of the installation.
- Equip the cabinet with an external air change or air-condition it, to put out dissipated power.
- Line transistor max. voltage and derivative limits, for which the solid state relay is equipped with inside safety devices (based on the models)
- Presence of load current dispersion range $5-20 \mathrm{~mA}$ depending on model) in absence of thyristor conduction due to internal RC protections.

Short circuit protection

Products listed in table "UL508 SCCR FUSES TABLE " are suitable for use on a circuit capable of delivering not more than 100,000 A rms Symmetrical Amperes, 600 Volts maximum when protected by fuses. Use fuses only.

According to UL508, test at 100.000A were carried out with class J fuses rated xxxA (refer to table "SCCR fuse protection table" to details of the current size fuses for the fuse)

After a shortcircuit the functioning of the device is not guaranteed.
To guarantee the functioning of the device after the short circuit, it is recommend the use of extra rapid fuses as in table "EXTRARAPID FUSES".

ATTENTION: The opening of the branch-circuit protective device may be an indication that a fault has been interrupted. To reduce the risk of fire or electric shock, current-carrying parts and other components of the device should be examined and replaced if damaged. If burnout of the device occurs, the complete device must be replaced or equivalent.

DERATING KURVEN

FUNCTION MODE

Trigger modes

The GFW provides the following power control modes:

- modulation via variation of phase angle: PA modality
- modulation via variation of number of conduction cycles with "zero crossing" trigger": ZC, BF, HSC modality.

PA - Phase angle

This mode manages power on the load by modulating load phase angle
ex: if power to be transferred to the load is $100 \%, \theta=180^{\circ}$
ex: if power to be transferred to the load is $50 \%, \theta=90^{\circ}$

Zero Crossing mode

This function eliminates EMC noise. This mode controls power on the load via a series of conduction ON and non conduction OFF cycles.
ZC - Zero Crossing constant cycle time ($\mathrm{Tc} \geq 1 \mathrm{sec}$, settable from 1 to 200 sec) Cycle time is divided into a series of conduction and non conduction cycles in proportion to the power value to be transferred to the load.
For example, if $\mathrm{Tc}=10 \mathrm{sec}$, if the power value is 20% there is conduction for 2 sec (100 conduction cycles @ 50 Hz) and non conduction for $8 \mathrm{sec}(400$ non conduction cycles @ 50 Hz).
(an

BF - Burst Firing, Zero Crossing variable cycle time.
This mode controls power on the load via a series of conduction ON and non conduction OFF cycles. The ratio of the number of ON cycles to OFF cycles is proportional to the power value to be supplied to the load.
The CT repeat period is kept to a minimum for each power value (whereas in ZC mode the period is always fixed and not optimized)

Example of operation in BF mode with power at 50%.

A parameter defines the minimum number of conduction cycles settable (from 1 to 10). In the example, this parameter $=2$.

HSC - Half single cycle

This mode corresponds to Burst Firing that manages Semi-cycles of on and off.

Ex function in modality HSC with power to 33 and 66%.

Softstart at power-on

This type of start can be enabled in either phase control or pulse train mode. With phase control, the increment of firing angle θ stops at the corresponding power value to be transferred to the load.
The control of maximum current spike can be enabled during the ramp phase (this is useful in case of short circuit on the load or loads with other temperature coefficients to automatically adjust the start time of the load).
The ramp is automatically re-enabled if the GFW remains off for a (settable) time.

DT - "Delay triggering" of first cycle (only for control modes ZC, BF) Settable from 0° to 90°.
Useful for inductive loads (transformer primaries) to prevent current spike that could in certain cases trip the high-speed fuses that protect the SCRs.

DESCRIPTION OF CONNECTIONS (for models GFW 40-300A)

DESCRIPTION OF CONNECTIONS (for models GFW400-600A)

GFW MASTER

GFW DUAL-PHASE (Master + 1 Expansion)

Lateral view with keypad

GFW THREE-PHASE
(Master + 2 Expansions)

DIMENSIONS (models GFW 400-600A)

GFW MASTER

GFW THREE-PHASE

TEMPLATE DIMENSIONS (models GFW 40-300A)

Fastening may be done with (5MA). All dimensions are expressed in mm.

TEMPLATE DIMENSIONS (models GFW 400-600A)

GFW MASTER

General features

Category of use:
AC51, AC55b, AC56a

Load type:

AC51 resistive or low-inductance loads
AC55b short-wave infrared lamp (SWIR)
AC56a transformers, resistive loads with high temperature coefficient.

Trigger mode:

PA - load control via adjustment of firing phase angle
ZC - Zero Crossing with constant cycle time (settable in range $1-200 \mathrm{sec}$)
BF - Burst Firing with variable cycle time (GTT) optimized min.
HSC - Half Single Cycle corresponds to Burst Firing that includes ON and OFF half-cycles.
Useful for reducing flicker with shortwave IR loads (applied only to calibrate each time you change feedback mode.

Nominal voltage:

480 Vac (max range $90-530 \mathrm{Vac}$)
600 Vac (max range $90-660 \mathrm{Vac}$)
690 Vac (max range 90-760 Vac)
Nominal frequency: $50-60 \mathrm{~Hz}$

Non-repetitive voltage:

1200Vpk (models 480 Vac)
1600Vpk (models $600 \mathrm{Vac} / 690 \mathrm{Vac}$)

Control analog input:

Voltage: $0 . . .5 \mathrm{Vdc}, 0 . . .10 \mathrm{Vdc}$
(impedance>100K Ω)
Current: $0 . . .20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$
(impedance 125 Ω)
Potentiometer: from $1 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$
(auto-fed by 5 V by GFW)

Digital inputs

Range $5-30 \mathrm{~V} \max 7 \mathrm{~mA}$
PWM input control: 0,03... 100 Hz
(PWM functionality configurable:

- for models GFW40-300A only with INDIG 3;
- for models GFW400-600A only with INDIG 1,2,3).

PID input

Sampling time: 60msec
Accuracy: $0,2 \% \mathrm{FS} \pm 1$ scale points $25^{\circ} \mathrm{C}$.
Thermal drift: <100ppm/ ${ }^{\circ} \mathrm{C}$ scale points.
Type:

- Thermocouples ITS90: J, K, R, S, T, custom (IEC584-1, CEI EN 60584-1,60584-2) Internal cold junction compensation with automatic compensation.
Selectable temperature range: ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
- Thermoresistance: Pt100 DIN 43760 Max. resistance 20Ω
Selectable temperature range: ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
- Voltage: range 0/12... $60 \mathrm{mV}, \mathrm{Ri}>1 \mathrm{M} \Omega$ $0 / 0,2 \ldots 1 \mathrm{~V}, \mathrm{Ri}>1 \mathrm{M} \Omega$ custom linearization at 32 sections
- Current: range $0 / 4 \ldots 20 \mathrm{~mA}, \mathrm{Ri}=50 \Omega$ custom linearization at 32 sections

TC AUX input

Sampling time: 480msec
Accuracy: $1 \% \mathrm{FS} \pm 1$ scale point $25^{\circ} \mathrm{C}$.
Type:

- Thermocouples ITS90: J, K, R, S, T, custom (IEC584-1, CEI EN 60584-1, 60584-2)
Internal cold junction compensation with automatic compensation..
- Voltage: range $0 / 12 \ldots 60 \mathrm{mV}, \mathrm{Ri}>1 \mathrm{M} \Omega$

Voltage line range

Range: 90... V_nominal_product
Frequency: $50-60 \mathrm{~Hz}$
Accuracy: 1% f.s with neutral connected, 2% f.s. without neutral connected

Voltage load range:

Accuracy:1\% f.s with load voltage measurement option (VLOAD option)
Accuracy: 2\% f.s without option VLOAD

Current load range

measures RMS value
Accuracy: 2% f.s at room temperature of $25^{\circ} \mathrm{C}$. Sampling time: 0.25 msec

Measurement of external current transformer:

(Option available only for GFW400-600A) Input f.s.: 5A rms
Input impedance: $16 \mathrm{~m} \Omega$
Accuracy: 2% f.s. at room temperature of $25^{\circ} \mathrm{C}$
Sampling time: 0.25 msec
SW parameter to set current transformer transformation ratio in range 1... 655 (allows measurement of current to secondary up to 3275A).

HB alarm output (optional)

The HB function detects partial or total load interruption.
The control measures load current by means of an internal device.
The current limit value is set via an automatic procedure activated with the HB button located near the upper connector. The alarm output is obtained by means of outputs OUT 9-10 (or OUT 5-8).

RS485 serial (PORT1)

Double RJ10 connector
RTU RS485 Modbus Protocol
Baud-Rate configurable from 1200 Baud to 115000 Baud
Pair of rotary-switches for node address.

Dip-switch for insertion of line termination resistance. Isolation 1500 V

Field bus (PORT2)
Protocol:
Modbus RTU___115Kbps
CANopen 10K...1Mbps
Profibus DP___ $9,6 \ldots 12 \mathrm{Mbps}$
Ethernet IP/Modbus TCP 10/100Mbps
EtherCAT 10/100Mbps
PROFINET 10/100Mbps

OUTPUTS

Isolation HV

Rated isolation voltage input/output:
4000 Vac
GFW 40
Nominal current 40 Arms @ $40^{\circ} \mathrm{C}$ in continuous service
Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$:
1400 A
$I^{2} t$ for blowout: 10000 A $^{2} s$
dV/dt critical: $1000 \mathrm{~V} / \mu \mathrm{s}$
GFW 60
Nominal current 60 Arms @ $40^{\circ} \mathrm{C}$ in continuous service
Non-repetitive overcurrent t=10ms: 1500 A
$I^{2 t}$ per fusione: $12000 \mathrm{~A}^{2} \mathrm{~s}$
dV/dt critica: $1000 \mathrm{~V} / \mathrm{hs}$
GFW 100
Nominal current $100 \mathrm{Arms} @ 40^{\circ} \mathrm{C}$ in continuous service
Non-repetitive overcurrent t=10ms: 1900 A
$\mathrm{I}^{2 t}$ for blowout: $18000 \mathrm{~A}^{2} \mathrm{~s}$
dV/dt critical: $1000 \mathrm{~V} /$ / s
SCCR: 100KA 600V UL508 conformant

GFW 150

Nominal current 150 Arms @ $40^{\circ} \mathrm{C}$ in continuous service.
Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$:
5000 A
$I^{2 t}$ for blowout: 125000 A $^{2} s$
dV/dt critical: $1000 \mathrm{~V} / \mathrm{\mu s}$
GFW 200
Nominal current 200 Arms @ $40^{\circ} \mathrm{C}$ in continuous service.
Non-repetitive overcurrent $t=10 \mathrm{~ms}$:
8000 A
$I^{2} t$ for blowout: 320000 A $^{2} s$
dV/dt critical: $1000 \mathrm{~V} /$ /
SCCR: 100KA 600V UL508 conformant

GFW 250
Nominal current 250 Arms @ $40^{\circ} \mathrm{C}$ in continuous service.
Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$:
8000 A
${ }^{12}$ t for blowout: $320000 \mathrm{~A}^{2} \mathrm{~s}$
dV/dt critical: $1000 \mathrm{~V} /$ /
SCCR: 100KA 600V UL508 conformant
GFW 300
Nominal current 300 Arms @ $40^{\circ} \mathrm{C}$ in continuous service.
Non-repetitive overcurrent $t=10 \mathrm{~ms}$: 8000 A
I^{2} t for blowout: $320000 \mathrm{~A}^{2} \mathrm{~s}$
dV/dt critical: 1000V/ $\mu \mathrm{s}$
SCCR: 100KA 600V UL508 conformant

GFW 400

Nominal current 400 Arms @ $50^{\circ} \mathrm{C}$ in continuous service.
Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$:
8.000 A
I^{2} t for blowout: 1.125.000 $\mathrm{A}^{2} \mathrm{~s}$
dV/dt critical: $1000 \mathrm{~V} / \mu \mathrm{s}$
SCCR: 100KA 600V UL508 conformant

GFW 500

Nominal current 500 Arms @ $50^{\circ} \mathrm{C} \mathrm{n}$ continuous service.
Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$:
15.000 A

I2t for blowout: 1.125.000 As
dV/dt critical: $1000 \mathrm{~V} / \mu \mathrm{s}$
SCCR: 100KA 600V UL508 conformant

GFW 600

Nominal current 600 Arms @ $50^{\circ} \mathrm{C}$ in continuous service.
Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$:
15.000 A
1^{2} t for blowout: 1.125.000 A2s
dV/dt critical: 1000V/ $\mu \mathrm{s}$
SCCR: 100KA 600V UL508 conformant

Thermic Dissipation:

GFW models dissipate thermic power based on load current:
Pdissipation = I_load_Arms * 1.3 V (W)
For models with integrated fuse, also consider dissipated power at rated current shown on the fuse table.

LED

N. 8 LEDs indicator:
(All LEDs are configurable via SW, the Default configuration provides):
RUN (green) RUN state of the CPU ERROR (red) error
DI1 (yellow) DI1digital input state
DI2 (yellow) DI2digital input state
O1 (yellow) Out. 1 main input state
O2 (yellow) Out. 2 main input state
O3 (yellow) Out. 3 main input state
BUTTON (yellow) State Key HB

POWER SUPPLY

for models GFW 40-300A:

CPU Power supply

$24 \mathrm{Vdc} / \pm 10 \%$ max. 10 VA
Cooling Fan Power Supply
(for each module PWR)
$24 \mathrm{Vdc} / \pm 10 \%$
Input @ 24 Vdc : max 500 mA

POWER SUPPLY

for models GFW 400-600A :

GFW 1PH Power supply
$24 \mathrm{Vdc} / \pm 10 \%$ max. 38 W
GFW 2PH Power supply
$24 \mathrm{Vdc} / \pm 10 \%$ max. 66 W
GFW 3PH Power supply
$24 \mathrm{Vdc} / \pm 10 \%$ max. 94 W

Ambient conditions

Working temperature: $0-50^{\circ} \mathrm{C}$ (see the derating curve)
Storage temperature:- $20^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
Max. relative humidity: 85% UR non-condensing
Max. installation altitude: 2000 m above mean sea level
Installation requirements: Installation category II, pollution level 2, double isolation Max. temperature of air surrounding device $40^{\circ} \mathrm{C}$ for temperature $>40^{\circ} \mathrm{C}$ refer at derating curves

- Device type: "UL Open Type"

Installation: panel with screws
Dimensions: see dimensions and installa-
tion

Weight

models consider with integrated fuse:

GFW-1PH 40/60/100 A	2.2 Kg
GFW-2PH 40/60/100 A	4.2 Kg
GFW-3PH 40/60/100 A	6.2 Kg

GFW-1PH 150/200/250/300 A 2.6 Kg
GFW-2PH 150/200/250/300 A 5.0 Kg
GFW-3PH 150/200/250/300 A 7.4 Kg

GFW- 1PH 400 A	8 Kg
GFW- 2PH 400 A	$15,5 \mathrm{Kg}$
GFW- 3PH 400 A	$22,5 \mathrm{Kg}$
GFW- 1PH 500/600 A	11 Kg
GFW- 2PH 500/600 A	21 Kg
GFW- 3PH 500/600 A	31 Kg

ELECTRICAL CONNECTIONS for models GFW 40-300A

POWER CONNECTIONS

RECOMMENDED WIRE GAUGES

GFW CURRENT LEVEL	TERMINAL	WIRE GAUGE	TERMINAL TYPE	TIGHTENING / TOOL TORQUE
40 A	1/L1, 2/T1	$10 \mathrm{~mm}^{2}$ 7 AWG	Wire stripped for 25 mm or with crimped pre-insulated terminal tube CEMBRE PKC1018	$5 \mathrm{Nm} /$ Flat-head screwdriver tip $1 \times 5.5 \mathrm{~mm}$
60 A	1/L1, 2/T1	$16 \mathrm{~mm}^{2}$ 5 AWG	Wire stripped for 25 mm or with crimped pre-insulated terminal tube CEMBRE PKC1618	$5 \mathrm{Nm} /$ Flat-head screwdriver tip $1 \times 5.5 \mathrm{~mm}$
100 A	1/L1, 2/T1,	$\begin{aligned} & 35 \mathrm{~mm}^{2} \\ & 2 \mathrm{AWG} \end{aligned}$	Wire stripped for 25 mm or with crimped pre-insulated terminal tube CEMBRE PKC35025	$5 \mathrm{Nm} /$ Flat-head screwdriver tip $1 \times 5.5 \mathrm{~mm}$
150 A	1/L1, 2/T1	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ 2 / 0 \mathrm{AWG} \end{gathered}$	Wire stripped for 25 mm or with crimped pre-insulated terminal tube CEMBRE PKC70022	6 Nm / hex head wrench N. 6
200 A	1/L1, 2/T1	$\begin{gathered} 95 \mathrm{~mm}^{2} \\ 4 / 0 \mathrm{AWG} \end{gathered}$	Wire stripped for 25 mm or with crimped pre-insulated terminal tube CEMBRE PKC95025	$6 \mathrm{Nm} / \mathrm{hex}$ head wrench N. 6
250 A	1/L1, 2/T1	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ 250 \mathrm{Kcmil} \end{gathered}$	Wire stripped for 25 mm	6 Nm / hex head wrench N. 6
300 A	1/L1, 2/T1	$\begin{gathered} 185 \mathrm{~mm}^{2} \\ 350 \mathrm{Kcmil} \end{gathered}$	Wire stripped for 25 mm	6 Nm / hex head wrench N. 6
---	3/L2 (Ref. Vline) 4/T2 (Ref. Vload)	$\begin{gathered} 0.25 \ldots 2.5 \mathrm{~mm}^{2} \\ 23 \ldots 14 \text { AWG } \end{gathered}$	Wire stripped for 8 mm or with tag terminal	0.5 ...0.6 Nm / Flat-head screwdriver tip $0.6 \times 3.5 \mathrm{~mm}$

Note: Cables must be copper "Stranded Wire" or "Compact-Stranded Wire" type with maximum operating temperature $60 / 75^{\circ} \mathrm{C}$
SIGNAL CABLES:

ELECTRICAL CONNECTIONS for models GFW 400-600A

POWER CONNECTIONS

RECOMMENDED WIRE GAUGES

GFW CURRENT LEVEL	TERMINAL	TYPE CABLE / SECTION TYPE RAIL / SECTION	TERMINAL TYPE CABLE / RAIL	TIGHTENING / TOOL TORQUE
400 A	1/L1, 2/T1	Single cable - $300 \mathrm{~mm}^{2}$ (600Kcmil)	Wire crimped at terminal tube Cembre A60-M12	N. 1 Bolt M12x25mm UNI 5739 hex head wrench n. 18 Pair: 50 Nm
400 A	1/L1, 2/T1	Double cable - $2 \times 95 \mathrm{~mm}^{2}$ (3/0 AWG)	Wire crimped at terminal tube Cembre A19-M10	N. 2 Bolts M10x25mm UNI 5739 hex head wrench n. 17 Pair: 40 Nm
400 A	1/L1, 2/T1	Double cable - $2 \times 95 \mathrm{~mm}^{2}$ (3/0 AWG)	Wire stripped for 30 mm inserted in ILSCO AU-350 lug (Accessory)	N. 1 Bolt M12x25mm UNI 5739 hex head wrench n. 18 Pair: 50 Nm (*) see note
400 A	1/L1, 2/T1	Copper rail ($\mathrm{W}=$ width, $\mathrm{H}=$ height) $\mathrm{W}=40 \quad 32 \quad 24 \mathrm{~mm}$ $H=2 \quad 2 \quad 3 \mathrm{~mm}$	Insulated copper rail with terminal non-insulated for $\mathrm{L}=60-65 \mathrm{~mm}$ max	N. 1 Bolt M12x25mm UNI 5739 hex head wrench n. 18 Pair: 50 Nm
400 A	PE	Cable $95 \mathrm{~mm}^{2}$ (3/0 AWG)	Wire crimped at terminal tube Cembre A19-M10	N. 1 Bolt M10x20mm UNI 5739 hex head wrench n. 17 Pair: 40 Nm
500 A	1/L1, 2/T1	Double cable - $2 \times 120 \mathrm{~mm}^{2}$ (250 Kcmil)"	Wire crimped at terminal tube Cembre A24-M10	N. 2 Bolts M10x25 mm UNI 5739 hex head wrench n .17 Pair: 40 Nm
500 A	1/L1, 2/T1	Double cable - $2 \times 120 \mathrm{~mm}^{2}$ (250 Kcmil)"	Wire stripped for 30 mm inserted in ILSCO AU-350 lug (Accessory)	N. 1 Bolt M12x25 mm UNI 5739 hex head wrench n .18 Pair: 50 Nm (*)
500 A	1/L1, 2/T1		Insulated copper rail with terminal noninsulated for $\mathrm{L}=60-65 \mathrm{~mm}$ max	N. 1 Bolt M12x25 mm UNI 5739 hex head wrench n .18 Pair: 50 Nm
500 A	PE	Cable $120 \mathrm{~mm}^{2}$ (250 Kcmil)	Wire crimped at terminal tube Cembre A24-M10	N. 1 Bolt M10x20 mm UNI 5739 Chiave esagonale n. 17 Pair: 40 Nm
600 A	1/L1, 2/T1	Double cable - $2 \times 185 \mathrm{~mm}^{2}$ (350 Kcmil)	Wire crimped at terminal tube Cembre A37-M10	N. 2 Bolts M10x25mm UNI 5739 hex head wrench n. 17 Pair: 40 Nm
600 A	1/L1, 2/T1	Double cable - $2 \times 185 \mathrm{~mm}^{2}$ (350 Kcmil)	Wire stripped for 30 mm inserted in ILSCO AU-350 lug (Accessory)	N. 1 Bolt M12x25mm UNI 5739 hex head wrench n. 18 Pair: 50 Nm (*) see note
600 A	1/L1, 2/T1	$\begin{aligned} & \text { Copper rail } \\ & \text { (W= width, } \mathrm{H}=\text { = height) } \\ & \text { (W }=50 \\ & \mathrm{~W} \\ & \mathrm{H}=40 \\ & \hline \end{aligned} r \begin{array}{rr} 32 & \mathrm{~mm} \\ \hline \end{array}$	Insulated copper rail with terminal non-insulated for $\mathrm{L}=60-65 \mathrm{~mm}$ max	N. 1 Bolt M12x25mm UNI 5739 hex head wrench n. 18 Pair: 50 Nm
600 A	PE	Cable 185mm² (350 Kcmil)	Wire crimped at terminal tube Cembre A37-M10	N. 1 Bolt M10x20mm UNI 5739 hex head wrench n. 17 Pair: 40 Nm
400 / 500 / 600 A	J6, J7	$0.25 \ldots 2.5 \mathrm{~mm}^{2}$ cable 23 ... 14 AWG	Cable peeled for 8 mm or with a tag terminal	$0.6 \ldots 0.6 \mathrm{Nm} / 0.6 \times 3.5 \mathrm{~mm}$ slotted screwdriver

SIGNAL CABLES:

J1: Auxiliary outputs J2: Relay output J3: Supply 24 V and digital inputs		0,2-2,5mm ${ }^{2}$	24-14AWG
J4: Analog control inputs J5: CT external inputs J6: V-line connector J7: V-load connector		0,25-2,5mm ${ }^{2}$	23-14AWG

J8, J9: SERIAL RS 485 (PORT1)	Connector RJ10 4-4 pin	Nr. Pin	Name	Description	Note (**) Connect the GND signal among Modbus devices with a line distance $>100 \mathrm{~m}$
		1	GND1 (**)		
		2	Tx/Rx+	Data reception/transmission (A+)	
		3	Tx/Rx-	Data reception/transmission (B-)	
		4	+V (reserved)		
	$\begin{array}{ll} 3 \\ 2 \end{array}$				

ORDER CODE

Control options	
Absent	0
Current limit	1
Current limit and feedback V,I,P	2
Current limit and feedback V,I,P + Vload input	3
Current limit and feedback V,I,P + Vload input + + TA external input (**)	4

NOTE
(*) Option not available for models with Nominal Current $>=400 \mathrm{~A}$
(**) Option not available for models with Nominal Current $<=300 \mathrm{~A}$
$\left({ }^{* * *)}\right.$ In case of replacement and/or insert of version E6, E7 in net using previous version of Fieldbus ["E2" or "E4"] PLC SW will be recompiled, with its own file GSDML and ESD

ACCESSORIES
CONFIGURATION KIT

Configuration/supervision kit for GFW by means of PC with USB (Windows environment). Lets you read or write all of the parameters of a single GFW. A single software for all models

- Easy and rapid configuration
- Saving and management of parameter recipes
- On-line trend and saving of historical data

Component Kit:

- Connection cable PC USB <----> GFW RS485 port
- Serial line converter
- CD SW GF Express installation

ORDERING CODE
GF_eXK-2-0-0
Cod. F049095

The human/machine interface (HMI) is simple, intuitive, and very practical thanks to the optional GFW - OP programming keyboard.
Lets you read or write all of the parameters of a single GFW-M module.
Connected with 9-pin D-SUB connector and housed in the front panel of the GFW-M by
means of a magnetic plate.

- Alphameric display: 5 lines x 21 characters.
- Keys to display variable and set parameters.
- Magnetic housing

ORDERING CODE
GFW - OP
Cod. F068952

Kit for 400/600A wiring with stripped wires (with this kit, wires with crimped terminal tube are not required), consisting of:
2 ILSCO lugs
2 M12x25 bolts
2 Belleville washers
2 IP20 protection grids for GFW400/600
ORDERING CODE
ILSCO Lug Kit

FUSES

Model	EXTRARAPID FUSES			
	$\begin{gathered} \text { Size } \\ \mathbf{I}^{2} \mathbf{t} \end{gathered}$	Code Format	Model Code	Power Dissipated @ In
GFW 40	$\begin{gathered} 80 \mathrm{~A} \\ 2500 \mathrm{~A}^{2} \mathrm{~s} \end{gathered}$	FUS-080S	$\begin{gathered} \text { DN000UB69V80 } \\ 338933 \end{gathered}$	5 W
GFW 60	$\begin{gathered} 125 A \\ 8900 A^{2} s \end{gathered}$	FUS-125S	$\begin{gathered} \text { DN000UB69V125 } \\ 338934 \end{gathered}$	6 W
GFW 100	$\begin{gathered} 160 \mathrm{~A} \\ 16000 \mathrm{~A}^{2} \mathrm{~s} \end{gathered}$	FUS-160S	$\begin{gathered} \text { DN000UB69V160 } \\ 338935 \end{gathered}$	12 W
GFW 150	$\begin{gathered} \text { 200A } \\ 31500 \mathrm{~A}^{2} \mathrm{~s} \end{gathered}$	FUS-200S	$\begin{gathered} \text { DN000UB69V200 } \\ 338930 \\ \hline \end{gathered}$	19 W
$\begin{gathered} \text { GFW } 200 / 250 / 300 \\ 480 / 600 \mathrm{~V} \end{gathered}$	$\begin{gathered} 450 \mathrm{~A} \\ 196000 \mathrm{~A}^{2} \mathrm{~s} \end{gathered}$	FUS-450S	$\begin{gathered} \text { DN00UB60V450L } \\ 338932 \end{gathered}$	17 W
GFW 200/250/300 $690 \mathrm{~V}$	$\begin{gathered} 400 \mathrm{~A} \\ 150000 \mathrm{~A}^{2} \mathrm{~s} \end{gathered}$	FUS-400S	$\begin{gathered} \text { DN00UB69V400L } \\ 338936 \end{gathered}$	20 W
GFW 400	$\begin{gathered} 1000 \mathrm{~A} \\ 970000 \mathrm{~A}^{2} \mathrm{~s} \end{gathered}$	FUS-1000	$\begin{gathered} \text { PC33UD69V1000TF } \\ 338160 \end{gathered}$	40 W
GFW 500	$\begin{gathered} 1000 \mathrm{~A} \\ 970000 \mathrm{~A}^{2} \mathrm{~s} \\ \hline \end{gathered}$	FUS-1000	$\begin{gathered} \text { PC33UD69V1000TF } \\ 338160 \\ \hline \end{gathered}$	50 W
GFW 600	$\begin{gathered} 1000 \mathrm{~A} \\ 970000 \mathrm{~A}^{2} \mathrm{~s} \end{gathered}$	FUS-1000	$\begin{gathered} \text { PC33UD69V1000TF } \\ 338160 \\ \hline \end{gathered}$	60 W

SCCR RMS SYM 100KA / 600V	UL508 SCCR FUSES TABLE				
Model	Configuration	"Short circuit current [Arms]"	"Max fuse size [A]"	Fuse Class	"Max Voltage [VAC]"
GFW 400	1PH or 2PH or 3PH	100.000	400	J	600
GFW 500	1PH or 2PH or 3PH	100.000	600	J	600
GFW 600	1PH or 2PH or 3PH	100.000	600	J	600

The fuses on the above table are representative of all the fuses of the same class with lower current ratings

- WARNINGS

Before installation, please read the following advices:

- Follow the indications of the manual scrupulously when making the connections to the product
- Use a cable that is suitable for the ratings of voltage and current indicated in the technical specifications
- If the instrument is used in applications where there is risk of injury to persons and damage to machines or materials, it is essential that it is used with an auxiliary alarm device.
It is advisable to verify frequently that the alarm device is functional even during the normal operation of the equipment.
- The product must not be used in environments where there could be the presence of dangerous atmospheres (inflammable or explosive).
- During continuous operation, the heatsink may reach $100^{\circ} \mathrm{C}$ and remain at a high temperature due to thermal inertia even after the device is switched off.

Therefore, do not touch the heat sink or the electrical wires

- Do not operate on the power circuit untless the main supply is disconnected
- Do not open the cover if device is "on"!

Installation:

- Connect the device to the ground using the proper ground terminal.
- The power supply wiring must be kept separate from that of inputs and outputs of the instrument; always check that the supply voltage corresponds to that indicated on the instrument cover.
- Delete this line entirely.
- Keep away from dust, humidity, corrosive gases and heat sources.

Maintenance: Check the correct operation of the cooling fans at regular intervals; clean the ventilation air filters of the installation at regular intervals.

- Repairs must be performed only by specialized or appropriately trained personnel. Cut off power to the device before accessing internal parts.
- Do not clean the box with solvents derived from hydrocarbons (trichloroethylene, gasoline, etc.). Using such solvents will compromise the mechanical reliability of the device.
To clean external plastic parts, use a clean cloth wet with ethyl alcohol or water.
Technical service: GEFRAN has a technical service department. Defects caused by use not conforming to the instructions are excluded from the warranty

GEFRAN spa reserves the right to make any kind of design or functional modification at any moment without prior notice

	Conformity C/CSA/US CoFC no. $\mathbf{7 0 0 0 2 8 5 6}$ (NOTE: GFW 400-600A products are not approved CSA)
	This device conforms to European Union Directive 2014/30/EU e 2014/35/EU with reference to generic standards: EN 60947-4-3 (product)
SCCR RIMS SYM 100KA/600V	Short Circuit Current Rating 100KA / 600V according to UL 508

