

Ball rail systems

ball runner blocks, ball guide rails, accessories

Product overview ball runner blocks with load ratings and load moments

Ball runner			Page		Size		15	20	25	30	35	45	55	65
blocks					<u> </u>	C.	Load rat	ings (N)	and load	moment	s (Nm)			
					° °		LUau rat	ings (iv) a	anu iuau	moment	5 (1111)			
Standard, heavy	_^>>>	FNS			С	1)	9860	23400	28600	36500	51800	86400	109000	172000
duty, ball runner blocks ⁷⁾ made of		R1651 ³⁾⁶⁾ R2001 ⁴⁾	48 ³⁾ 99 ⁴⁾	106 ⁶⁾	С С	2) 1)	8 850 12700	22 200 29800	26 700 35900	34 800 48100			174000	280000
steel ³⁾	C Strange	K2001*/	997		C ₀	2)	10 800	27 700	32 300	44 700		123 000	- 174000	200000
Resist NR ⁴⁾		SNS			M,	1)	95	300	410	630		2330	3480	6810
Resist CR ⁶⁾		R1622 ³⁾⁶⁾	54 ³⁾	106 ⁶⁾	Mt	2)	85	280	380	600		2 220	-	-
		R2011 ⁴⁾	99 ⁴⁾		M _{t0}	1) 2)	120	380	510	830		3560	5550	11100
	¥	SNH			M _{t0}	1)	100 68	350 200	460 290	780 440		3 320 1540	2320	4560
		R1621 ³⁾⁶⁾	60 ³⁾		M	2)	62	190	270	420		1 480	- 2520	4300
					MLO	1)	87	260	360	580	1130	2350	3690	7400
	-GI				M _{L0}	2)	76	240	330	540		2 210	-	-
	/ ×	FLS	= 0 2)	1000)	C	1) 2)	12800	29600	37300	46000	66700		139000	223000
		R1653 ³⁾⁶⁾ R2002 ⁴⁾	50 ³⁾ 99 ⁴⁾	106 ⁶⁾	С С	1)	11 500 18400	28 200 41800	34 800 52500	43 800 66900			245000	404000
	C SEL	N2002 ⁹	35.7		C ₀	2)	15 600	38 800	47 300			177 000	245000	+04000
		SLS			M _t	1)	120	380	530	800		3010	4410	8810
		R1623 ³⁾⁶⁾	56 ³⁾	106 ⁶⁾	M _t	2)	110	360	500	760		2 870	-	-
	C C	R2012 ⁴⁾	99 ⁴⁾		M _{t0} M _{t0}	1) 2)	180 150	540 500	750 670	1160 1080		5120 4 770	7780	16000
	~	SLH	62 ³⁾	106 ⁶⁾	ML	1)	130	300 340	530	740		2730	3960	8160
		R1624 ³⁾⁶⁾	02-7	100-7	M	2)	110	330	500	710		2 630	-	-
					MLO	1)	180	490	740	1080		4660	6990	14800
Standard ball	*	FKS			MLO	2) 1)	150 6720	460 15400	670 19800	1010 25600		4 370	-	-
runner block ⁷⁾		FK5 R1665 ³⁾	52 ³⁾	106	C C	2)	6 030	1 5400 14 700	18 500	25600	1	_	_	_
made of steel ³⁾		R2000 ⁴⁾	99 ⁴⁾	100	C ₀	1)	7340	16500	21200	28900		-	-	-
Resist NR ⁴⁾	C C C				C ₀	2)	6 230	15 300	19 100	26 900		-	-	_
Resist CR ⁶⁾	^	SKS			Mt	1) 2)	65	200	280	440	790	-	-	-
		R1666 ³⁾ R2010 ⁴⁾	58 ³⁾ 99 ⁴⁾	106	M _t M _{t0}	2) 1)	58 71	190 210	260 300	420 500			-	-
	CEL I	N2010 %	99**		M _{t0}	2)	60	200	270	470		_	_	_
					ML	1)	29	83	130	200		-	-	-
					ML	2)	27	81	120	200		-	_	
					M _{L0} M _{L0}	1) 2)	32 28	89 84	140 130	230 220	460 430	-	-	_
		FNN			C	1)	- 20	14500	28600		430	-	-	-
		R1693 ³⁾⁶⁾⁸⁾	64 ³⁾	106 ⁶⁾	C ₀	1)		24400	35900	-	-	-	-	-
	· ()	SNN			Mt	1)	_	190	410	_	-	-	-	_
		R1694 ³⁾⁶⁾⁸⁾	68 ³⁾	106 ⁶⁾	M _{t0}	1)		310	510	-	-	-	-	-
	* CI				ML	1)	_	100	290	-	-	-	-	-
					MLO	1)	-	165	360	-	-	-	-	-
		FKN			С	1)	-	9600	19800	-	-	-	-	-
		R1663 ³⁾⁶⁾⁸⁾	66 ³⁾	106 ⁶⁾	C ₀	1)		13600	21200	-	-	-	-	-
	\sim	SKN			M _t	1)	-	120	280	-	-	-	-	-
		R1664 ³⁾⁶⁾⁸⁾	70 ³⁾	106 ⁶⁾	M _{t0}	1)	-	170	300	-	-	-	-	-
	~				ML	1)	-	40	130	-	-	-	-	-
					M _{L0}	1)		58	140		-	-		
Super Ball Runner Block	<u>i an </u>	FKS 1661 ³⁾⁶⁾	88 ³⁾	107 ⁶⁾	С	1)	3900	10100	11400	15800		-	-	-
made of steel ³⁾			00%	10/%	F _{max}	1)	1500	3900	4400	6100			-	-
Resist CR ⁶⁾		SKS 1662 ³⁾⁶⁾	90 3)	107 ⁶⁾	M _t	1)	39	130	170	270			-	-
	Contraction of the second seco	1002	50.7	101	M _{tmax}	(1)	15	50	65	105	175	-	-	-

General technical data and calculations

Dynamic equivalent load on bearing

The determination of the dynamic equivalent load on bearing F_m for the calculation of the service life is implemented according to track ratios q_m according to formula (9).

(9)
$$F_{m} = \frac{3}{\sqrt{(F_{eff 1})^{3} \cdot \frac{q_{s1}}{100\%} + (F_{eff 2})^{3} \cdot \frac{q_{s2}}{100\%} + ... + (F_{eff n})^{3} \cdot \frac{q_{sn}}{100\%}}$$

Equivalent static load on bearing

With a combined vertical and horizontal external static load in conjunction with a static torsional or longitudinal moment, calculate the static equivalent load on bearing $F_{0 \text{ comb}}$ according to formula (10).

(10)
$$F_{0 \text{ comb}} = |F_{0y}| + |F_{0z}| + C_0 \cdot \frac{|M_{0x}|}{M_{t0}} + C_0 \cdot \frac{|M_{0y}|}{M_{L0}} + C_0 \cdot \frac{|M_{0z}|}{M_{L0}}$$

Notes

The static equivalent load on bearing $F_{0 \text{ comb}}$ must not exceed the static load capacity C_0 . Formula (10) only applies when using a single ball guide rail. Reduce an external load that affects the ball runner block at any angle to F_{0y} and F_{0z} and insert the amounts into formula (10).

Definitions and calculation for dynamic and static load ratios

Using the ratio of load rating to load of the ball runner blocks, you can make a preselection of the guideway. The dynamic loading ratio C/F_{max} and the static loading ratio $C_0/F_{0 max}$ should be selected according to the application. The necessary load ratings are calculated from this. The load rating overview yields the corresponding dimensions and format.

Recommended values for load ratios

The table below contains guideline values for the load ratios. The values are offered merely as a rough guide reflecting typical customer requirements (e.g. service life, accuracy, rigidity) by sector and application.

Case 1: Static load F_{0 max} > F_{max}:

Case 2: Static load F_{0max} < F_{max}:

Dynamic ratio = $\frac{C}{F_{max}}$ Static ratio =	C ₀ F _{0 max} Static	ratio =	C ₀ F _{max}
Machine type/sector	Application example	C/Fmax	C ₀ /F _{0 max}
Machine tools	General	6 9	> 4
	Turning	6 7	> 4
	Milling	6 7	> 4
	Grinding	9 10	> 4
	Engraving	5	> 3
Rubber and plastics processing machinery	Injection molding	8	> 2
Woodworking and wood processing machines	Sawing, milling	5	> 3
Area of mounting/handling technology and industrial robots	Handling	5	> 3
Oil hydraulics and pneumatics	Lifting/lowering	6	> 4

Design and version

Ball guide rails			Application area	Fastening type	Special feature
Standard ball guide rail made of steel		SNS / SNO R1605 .3 R1605 .B R1645 .3 ²⁾ R2045 .3 ¹⁾	Standard version Very harsh environments Robust strip clamp	For mounting from above	With cover strip and strip clamp. A single cover for all holes. No end-face hole required for strip clamp.
		SNS / SNO R1605 .6 R1605 .D	Harsh environments Compact strip clamp	For mounting from above	With cover strip and protective cap. A single cover for all holes.
		SNS / SNO R1605 .0 R1605 .C R1645 .0 ²⁾ R2045 .0 ¹⁾	Inexpensive	For mounting from above	With plastic mounting hole plugs. No extra space required at rail ends.
		SNS R1606 .5	More resistant to mechanical influences (e.g. shocks) Very harsh environments	For mounting from above	With steel mounting hole plugs. No extra space required at rail ends.
		SNS R1607 .0 R1647 .0 ²⁾ R2047 .0 ¹⁾	Easy access to the mounting base underside, best sealing action of end seals	For mounting from below	Use of larger screws than for mounting from above. Greater side loads permitted. No extra space required at rail ends.
Wide ball guide rails made of steel		BNS R1675 .0 R1673 .0 ²⁾	High moment rigidity	For mounting from above	With plastic mounting hole plugs. No extra space required at rail ends.
K	6	BNS R1676 .5	More moment rigidity, more resistant to mechanical influences (e.g. shocks) Very harsh environments	For mounting from above	With steel mounting hole plugs. No extra space required at rail ends.
Ę		BNS R1677 .0	High moment rigidity Best sealing action of end seals	For mounting from below	Use of larger screws than for mounting from above. Larger side loads are permitted than for the single-row series. No extra space required at rail ends.

1) Resist NR II

2) Resist CR

For short product names of the design styles, see the product description

Accessories

Accessories Connection elements a options for the ball run		Application area
Cover plate wiper		The cover plate wiper is an additional element for wiping off coarse particles or dealing with contamination that has been deposited on the ball guide rail. When making your selection, please note whether the ball guide rail is used with or without cover strips.
Front seal Two-piece		The front seal effectively prevents dirt, liquid or small particles from entering the ball runner block. This means that the sealing effect is improved even more. The two-part front seal can also be retrofitted via the ball guide rail.
FKM seal One and two-piece	and the second se	Better sealing effect than front seal but higher friction. Used for very heavy contamination, cooling lubricants or aggressive media. Chemical and temperature resistant.
Seal kit		When using cover plate wiper and front seal simultaneously, the seal kit is recommended.
Lubrication adapter		For oil and grease lubrication from above for SNH and SLH ball runner blocks (high versions).
Lubrication plate		Enables further variations for lubrication of ball runner blocks; Available for lube connection with metric thread or pipe thread.
Front lube unit	Contraction of the second s	For applications requiring very long relubrication intervals. They allow travel distances of up to 25,000 km without relubrication under normal loads. The function is only assured where there is no exposure to liquids and little contamination. The maximum operating temperature is 60 °C.
Bellows		Bellows are available in various versions, with or without lubrication plate. Bellows in heat-resistant design are metalized on one side and are therefore not flammable, resistant to sparks, welding spatter or hot chips. Temperature stability briefly up to 200 °C and operating temperature of 80 °C possible.
Clamping and braking units		Clamping elements can be used to secure the ball rail system against displacement in the static state. With braking units, the ball rail system can be braked in the dynamic state and secured against displacement in the resting state. The following versions are available: Hydraulic, pneumatic and manual clamping units.

System preload

Definition of preload

Ball Runner Blocks can be preloaded to increase rigidity. The internal preload forces that occur in this connection must be considered in the life expectancy calculation. You can choose the preload class to match the area of application. Refer to the table for preload force $F_{\rm pr}$.

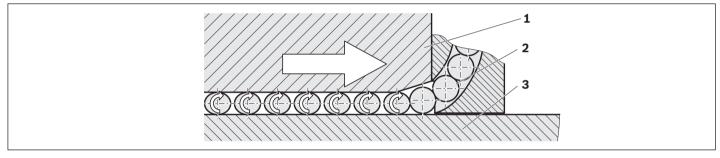
Example

- Area of application: Precise guide systems with low external load and high overall rigidity requirements. This results in preload class C1.
- Selected ball runner block FNS R1651 314 20
- The selected ball runner block yields a preload force F_{pr} according to the table.
- It is installed at 840 N internal preload force F_{pr}.

Code	Preload	Application area
C0 ¹⁾	Without preload (clearance)	For particularly smooth-running guide systems with the lowest possible friction for applications with large installation tolerances. Clearance versions are available only in accuracy classes N and H.
C1	Moderate preload	For precise guide systems with low external loads and high demands on overall rigidity.
C2	Medium preload	For precise guide systems with both high external loading and high demands on overall rigidity; also recommended for single-rail systems. Above average moment loads can be absorbed without significant elastic deflection. Further improved overall rigidity with only medium moment loads.
C3	High preload	For highly rigid guide systems, e.g. precision tooling machines etc. Above-average loads and moments are caught with the lowest possible elastic deformation. Ball runner blocks with preload C3 only available in accuracy classes UP, SP and XP, heavy duty ball runner blocks only available in UP, SP and P.

1) In the case of ball runner blocks without preload (preload class C0), there is a clearance between the ball runner block and the rail of 1 to 10 μ m. When using two rails and more than one ball runner block per guide rail, this clearance is usually equalized by parallelism tolerances.

Highlights of the ball runner blocks BSHP


- ► Further increased travel accuracy up to a factor of six
- Significantly reduced frictional oscillations and low friction force level, particularly under external load
- Maximum precision
- Selected qualities
- Minimum quantity preservation in the accuracy classes XP; SP; UP. (Impairment of the environment is reduced by the preserving agent)
- Patented entry zone increases the sequence accuracy
- All other advantages of Rexroth precision ball runner blocks integrated

Comparison

Conventional ball runner blocks

If the ball runner block comprises of a conventional entry zone, this may only be designed for a specific load point.

Entry-zone geometry for conventional ball runner blocks

1) Ball runner blocks 2) Ball 3) Ball guide rail

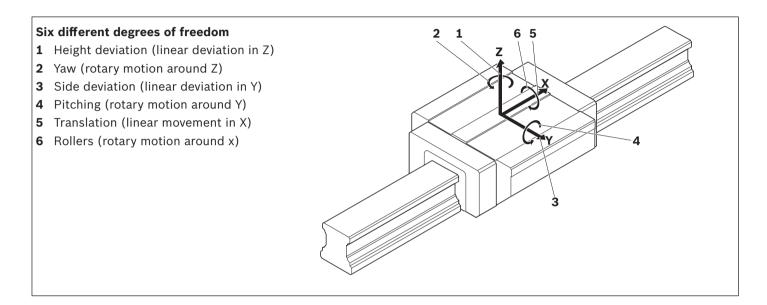
Ball entry

- ► The balls are guided up to the start of the entry zone via the roller deflection.
- If the distance between the ball runner block (1) and the ball guide rail (3) is smaller than the ball diameter, the ball (2) is put under load (preload) in pulses.
- ► The preload is increased in the entry zone and reaches its maximum in the load bearing zone. By doing so, the ball transmits its force from the ball runner block to the ball guide rail.
- Due to the kinematic and geometric relations, a distance between the individual balls is set.

Entry zone

The conventional ball runner blocks comprise of a fix entry zone. The depth of the entry zone shall be suitable for a high load, since a fault-free ball entry is to be guaranteed under very high loads, as well.

- On the one hand, as many load-bearing balls as possible should be in the ball runner block in order to reach an ideal load-carrying capacity.
 - \Rightarrow Entry zone as short as possible
- On the other hand, the load during the entry of the balls should be increased as slowly as possible and thus in a harmonic manner in order to reach the maximum of the geometric travel accuracy.
 - \Rightarrow Entry zone which is as flat (long) as possible


There is a conflict of aims between short and long entry zones.

Product description

Travel accuracy

Definition

In an ideal case, a ball runner block moves transitively in relation to the x-axis over the ball guide rail. In practice, however, deviations occur in all six degrees of freedom. The term travel accuracy describes the deviation from this ideal line.

Causes of travel inaccuracy

The Travel inaccuracy is impacted by the following points.

- 1. Inaccurate mounting base on which the ball guide rail is mounted.
- 2. Parallelism error between the contact areas of the ball guide rail and the running tracks.
- 3. Elastic deformations of the ball guide rail by the mounting screws.
- 4. Accuracy fluctuations caused by the balls entering and exiting.

Potential for optimization

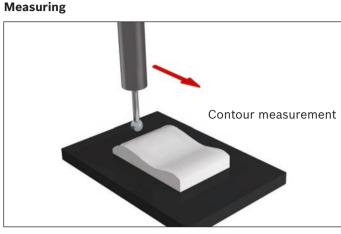
With respect to 1: Contact surfaces of the ball guide rail should be produced as precisely as possible (outside of the scope of influence of Rexroth).

With respect to 2: Any deviation should be equalized by the selection of the accuracy class of the ball guide rail.

With respect to 3: Reduce the tightening torque. The tightening torque of the fastening screws has a proportional impact. A reduction of the tightening torque decreases the compressive strain of the rail material.

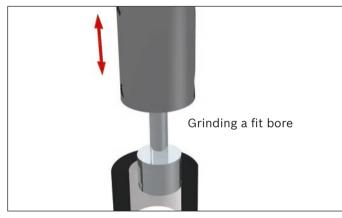
 \Rightarrow Lower geometric process fluctuations

With respect to 4: The patented, innovative entry zone of Rexroth - High-precision Ball Runner Blocks reduces the speed fluctuations to a minimum.

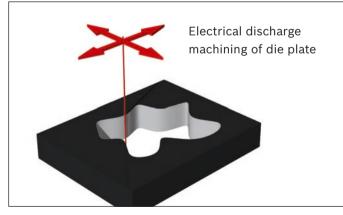

A With this measure, the transferable forces and moments can be reduced.

Further potential for improvement:

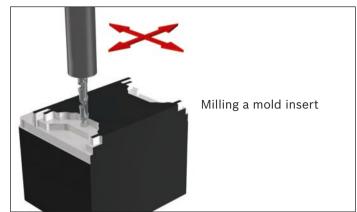
- Use of long ball runner blocks
- ▶ Installation of additional ball runner blocks per ball guide rail.


Application examples

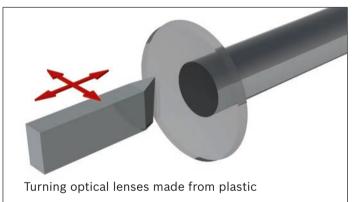
Rexroth high-precision ball runner blocks are particularly suited for the following applications:


3D Coordinate Measuring Machine

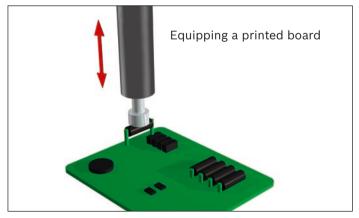
Grinding


Internal cylindrical grinding

Electrical discharge machining

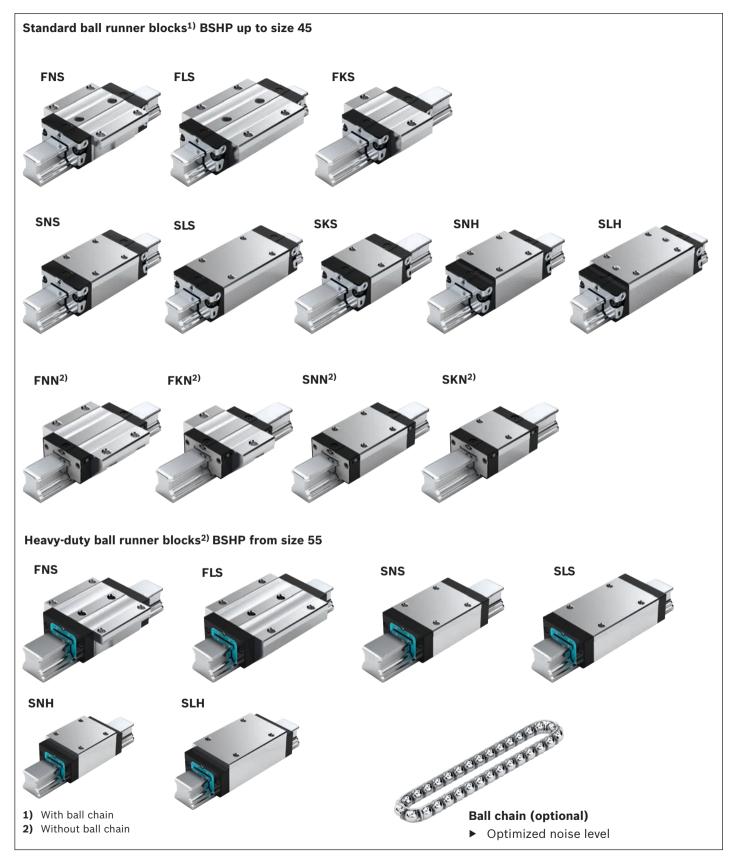

Wire electrical discharge machining

Milling


Hard milling

Turning

High-precision turning


Microelectronics


Printed board mounting machine

These are only a few examples. Naturally, other applications can be realized. Feel free to ask any questions that you may have. We have an appropriate solution.

Overview of formats

FNS – Flanged, normal, standard height R1651 ... 2.

Dynamic characteristics

Travel speed:	V _{max}	=	5 m/s
Acceleration:	a _{max}	=	500 m/s^2
(If $F_{comb} > 2.8 \cdot F_{pr}$:	a _{max}	=	50 m/s²)

Note on lubrication

Pre-lubricated

Note

Can be used on all SNS/SNO ball guide rails. Ball runner blocks of size 55 and size 65 can be found in chapter "Heavy-duty ball runner block BSHP made of steel" after this chapter.

Options and material numbers

Size	Ball runner	Preload	l class			Accurac	y clas	s				Seals o	n ball	runner	blocks		
	blocks with size											withou	t ball c	hain	with ba	all chain	
		CO	C1	C2	С3	N	н	Р	XP	SP	UP	SS	LS ¹⁾	DS	SS	LS ¹⁾	DS
15	R1651 1	9	ĺ			4	3	-	-	-	-	20	21	-	22	23	-
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
20	R1651 8	9				4	3	-	-	-	-	20	21	-	22	23	-
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
25	R1651 2	9				4	3	-	-	-	-	20	21	-	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
30	R1651 7	9	İ			4	3	-	-	-	-	20	21	-	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
35	R1651 3	9				4	3	-	-	-	-	20	21	-	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
45	R1651 4	9	İ			4	3	-	-	-	-	20	-	-	22	-	-
			1			4	3	2	8	1	9		-	2Z	22	-	2Y
				2		-	3	2	8	1	9	20	-	2Z	22	-	2Y
					3	-	-	-	8	1	9	20	-	2Z	22	-	2Y
E.g.:	R1651 7		1				3					20				÷	

1) Only for accuracy classes N and H and for XP in preload class C1.

Order example

Options:

- ► Ball runner blocks FNS
- Size 30
- Preload class C1
- Accuracy class H
- With standard seal, without ball chain

Material number:

R1651 713 20

Preload classes

C0 = Without preload (clearance) C1 = Moderate preload C2 = Average preload


C3 = High preload

Seals

SS = Standard seal LS = Low-friction seal DS = Double-lip seal

Key

FKS – flange, short, standard height R1665 ... 2.

Dynamic characteristics

 $\begin{array}{ll} \mbox{Travel speed:} & \mbox{v_{max}} = 5 \mbox{ m/s} \\ \mbox{Acceleration:} & \mbox{a_{max}} = 500 \mbox{ m/s}^2 \\ \mbox{(If F_{comb}> 2.8 $\cdot F_{pr}: a_{max} = 50 \mbox{ m/s}^2) } \end{array}$

Note on lubrication

Pre-lubricated

Note

Can be used on all SNS/SNO ball guide rails.

Options and material numbers

Size	Ball runner blocks	Preload class		Accuracy cla	ISS	Seals on	ball ru	ınner b	locks		
	with size				without	ball ch	ain	with ball chain			
		CO	C1	N	н	SS	LS	DS	SS	LS	DS
15	R1665 1	9		4	3	20	21	_	22	23	-
			1	4	3	20	21	2Z	22	23	2Y
20	R1665 8	9		4	3	20	21	-	22	23	-
			1	4	3	20	21	2Z	22	23	2Y
25	R1665 2	9		4	3	20	21	_	22	23	-
			1	4	3	20	21	2Z	22	23	2Y
30	R1665 7	9		4	3	20	21	_	22	23	-
			1	4	3	20	21	2Z	22	23	2Y
35	R1665 3	9		4	3	20	21	_	22	23	-
			1	4	3	20	21	2Z	22	23	2Y
E.g.:	R1665 7		1		3	20					

Order example

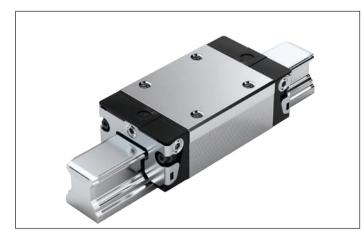
Options:

- ▶ Ball runner blocks FKS
- ► Size 30
- Preload class C1
- Accuracy class H
- With standard seal, without ball chain

Material number:

R1665 713 20

Preload classes


C0 = Without preload (clearance) C1 = Moderate preload

Seals

SS = Standard seal LS = Low-friction seal DS = Double-lip seal

Key

SNS – Slimline, normal, standard height R1622...2.

Dynamic characteristics

Travel speed:	V _{max}	=	5 m/s
Acceleration:	a _{max}	=	500 m/s^2
(If $F_{comb} > 2.8 \cdot F_{pr}$:	a _{max}	=	50 m/s²)

Note on lubrication

Pre-lubricated

Note

Can be used on all SNS/SNO ball guide rails. Ball runner blocks of size 55 and size 65 can be found in chapter "Heavy-duty ball runner block BSHP made of steel" after this chapter.

Options and material numbers

Size	Ball runner	Preload of	class			Accurac	y class			Seals or	n ball rur	ner bl	ocks		
	blocks with size									without ball chain with ball chain					
		C0	C1	C2	C3	N	H	Р	ХР	SS	LS ¹⁾	DS	SS	LS ¹⁾	DS
15	R1622 1	9				4	3	-	-	20	21	-	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
20	R1622 8	9		Í		4	3	-	-	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
25	R1622 2	9				4	3	-	-	20	21	_	22	23	-
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
30	R1622 7	9				4	3	-	-	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
35	R1622 3	9				4	3	-	-	20	21	-	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
45	R1622 4	9				4	3	-	-	20	-	-	22	-	_
			1			4	3	2	8	20	-	2Z	22	-	2Y
				2		-	3	2	8		-	2Z	22	-	2Y
					3	-	-	-	8	20	-	2Z	22	-	2Y
E.g.:	R1622 7		1				3			20					

1) Only for accuracy classes N and H and for XP in preload class C1.

Order example

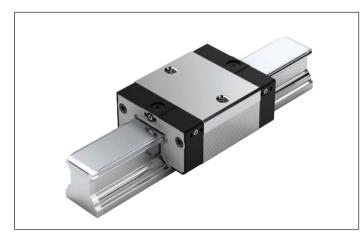
Options:

- ► Ball runner blocks SNS
- Size 30
- Preload class C1
- Accuracy class H
- With standard seal, without ball chain

Material number:

R1622 713 20

Preload classes


- C0 = Without preload (clearance) C1 = Moderate preload
- C2 = Average preload C3 = High preload

Seals

SS = Standard seal LS = Low-friction seal DS = Double-lip seal

Key

SKN – Slimline, short, low R1664 ... 1.

Dynamic characteristics

 $\begin{array}{ll} \mbox{Travel speed:} & v_{max} = 3 \ m/s \\ \mbox{Acceleration:} & a_{max} = 250 \ m/s^2 \\ \mbox{(If } F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \ m/s^2) \end{array}$

Note on lubrication

No initial lubrication

Note

Can be used on all SNS/SNO ball guide rails.

Options and material numbers

Size	Ball runner blocks with size	Preload class		Accuracy class	Accuracy class S w		ner blocks n
		CO	C1	N	н	SS	LS
20	R1664 8	9	1	4	3	10	11
25 ¹⁾	R1664 2	9	1	4	3	10	11
E.g.:	R1664 8		1		3	10	

1) BSHP ball runner block

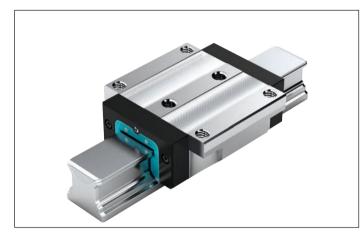
Order example

Options:

- Ball runner block SKN
- ► Size 20
- Preload class C1
- Accuracy class H
- With standard seal, without ball chain

Material number:

R1664 813 10


Preload classes

C0 = Without preload (clearance) C1 = Moderate preload

Seals SS = Standard seal LS = Low-friction seal

Key

FNS – flanged, normal, standard height, R1651 ... 1.

Dynamic characteristics

 $\begin{array}{ll} \mbox{Travel speed:} & \mbox{v_{max}} = 3 \ m/s \\ \mbox{Acceleration:} & \mbox{a_{max}} = 250 \ m/s^2 \\ \mbox{(If F_{comb} > 2.8 $\cdot F_{pr} : a_{max} = 50 \ m/s^2) } \end{array}$

Note on lubrication

No initial lubrication

Note

Can be used on all SNS ball guide rails.

Options and material numbers

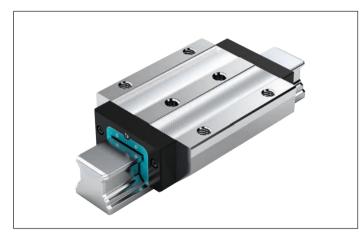
Size	Ball runner blocks with size	Preload	class			Accur	acy cl	ass			Seals on ball runner blocks without ball chain
		CO	C1	C2	C3	N	н	Р	SP	UP	SS
55	R1651 5	9				4	3	-	-	-	10
			1			4	3	2	1	9	10
				2		-	3	2	1	9	10
					3	-	-	2	1	9	10
65	R1651 6	9				4	3	-	-	-	10
			1			4	3	2	1	9	10
				2		-	3	2	1	9	10
					3	-	-	2	1	9	10
E.g.:	R1651 5		1				3				10

Order example

Options:

- ► Ball runner blocks FNS
- ► Size 55
- Preload class C1
- Accuracy class H
- With standard seal,

without ball chain


Material number: R1651 513 10 Preload classes

- C0 = Without preload (clearance) C1 = Moderate preload
- C2 = Average preload
- C3 = High preload

Seals

SS = Standard seal

FLS – flanged, long, standard height, R1653 ... 1.

Dynamic characteristics

Travel speed:	V _{max}	=	3 m/s
Acceleration:	a _{max}	=	250 m/s^2
(If $\rm F_{comb} > 2.8 \cdot F_{pr}$: a _{max}	=	50 m/s²)

Note on lubrication

No initial lubrication

Note

Can be used on all SNS ball guide rails.

Options and material numbers

Size	Ball runner blocks with size	Preload c	lass		Accura	cy clas	S		Seals on ball runner blocks without ball chain		
		CO	C1	C2	C3	N	н	P	SP	UP	SS
55	R1653 5	9				4	3	-	-	-	10
			1			4	3	2	1	9	10
				2		-	3	2	1	9	10
					3	-	-	2	1	9	10
65	R1653 6	9				4	3	-	-	-	10
			1			4	3	2	1	9	10
				2		-	3	2	1	9	10
					3	-	-	2	1	9	10
E.g.:	R1653 5		1				3				10

Order example

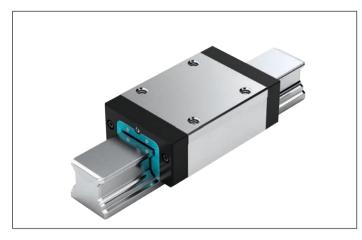
Options:

- Ball runner blocks FLS ►
- Size 55 ►
- Preload class C1 ►
- Accuracy class H
- ► With standard seal,

without ball chain

R1653 513 10

Material number:


Preload classes

- C0 = Without preload (clearance) C1 = Moderate preload
- C2 = Average preload
- C3 = High preload

Seals

SS = Standard seal

SNS – Slimline, normal, standard height, R1622...1.

Dynamic characteristics

 v_{max} = 3 m/s Travel speed: $a_{max} = 250 \text{ m/s}^2$ Acceleration: $(If F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2)$

Note on lubrication

No initial lubrication

Note

Can be used on all SNS ball guide rails.

Options and material numbers

Size	Ball runner blocks with size	Preload class				Accuracy c	lass		Seals on ball runner blocks without ball chain
		C0	C1	C2	C3	N	н	Р	SS
55	R1622 5	9				4	3	-	10
			1			4	3	2	10
				2		-	3	2	10
					3	-	-	2	10
65	R1622 6	9				4	3	-	10
			1			4	3	2	10
				2		-	3	2	10
					3	-	-	2	10
E.g.:	R1622 5		1				3		10

Order example

Options:

- Ball runner blocks SNS
- Size 55
- Preload class C1
- Accuracy class H ►
- With standard seal,

without ball chain

Material number: R1622 513 10

Preload classes

- C0 = Without preload (clearance) C1 = Moderate preload
- C2 = Average preload
- C3 = High preload

SS = Standard seal

Seals

Size Ball		Preload		Accuracy			Seals on ball runner blocks							Load ra	-	Load moments ²⁾ (Nm)				
	runner blocks	clas	S		class	5		witho	ut ball		with k	all ch	ain	(kg)		<u>↑</u> 了_←	Ę	2		
	with size	CO	C1	C2	N	н	Р	chain SS	LS ¹⁾	DS	SS	LS ¹⁾	DS	m	с	C ₀	M,	M _{t0}	ML	M _{L0}
SNS				02			·		20				20			0	····t	···to	۲	
15	R2011 1	9			4	3	-	04	05	_	06	07	-	0.15	5100	9300	63	90	34	49
			1		4	3	2	04	05	OX	06	07	0W							
				2	-	3	2	04	-	0X	06	-	0W							
20	R2011 8	9			4	3	-	04	05	-	06	07	-	0.35	12300	16900	205	215	110	115
			1		4	3	2	04	05	ОX	06	07	0W							
				2	-	3	2	04	-	ОX	06	-	OW							
25	R2011 2	9			4	3	-	04	05	-	06	07	-	0.50	15000	21000	270	295	150	165
			1		4	3	2	04	05	ОX	06	07	OW							
				2	-	3	2	04	-	OX	06	-	0W							
30	R2011 7	9			4	3	-	04	05	-	06	07	-	0.85	20800	28700	460	500	245	265
			1		4	3	2	04	05	0X	06	07	OW							
	D0011.0			2	-	3	2	04	-	ОX	06	-	OW	1.05	07000	07500	700	0.05	075	
35	R2011 3	9	- 1		4	3	-	04	05	-	06	07	-	1.25	27600	37500	760	805	375	390
			1	2	4	3 3	2 2	04	05	0X	06	07	0W 0W							
SLS				2	_	3	2	04	-	ОХ	06	-	000							
15	R2012 1	9			4	3		04	05		06	07		0.20	8500	14000	82	132	64	104
15	R2012 1	9	1		4	3	-	04	05		06	07	 OW	0.20	0500	14000	02	132	04	104
			1	2	4	3	2	04	- 05	0X	06	- 07	OW							
20	R2012 8	9			4	3	_	04	05	- 07	06	07	-	0.45	16000	24400	265	310	190	230
20	112012 0	5	1		4	3	2	04	05	OX	06	07	OW	0.40	10000	24400	205	510	100	200
			-	2	-	3	2	04	-	0X	06	_	OW							
25	R2012 2	9			4	3	-	04	05	_	06	07	-	0.65	20000	31600	365	450	290	350
			1		4	3	2	04	05	OX	06	07	0W							
				2	_	3	2	04	_	OX	06	_	OW							
30	R2012 7	9			4	3	-	04	05	_	06	07	-	1.10	26300	40100	590	695	420	495
			1		4	3	2	04	05	ОX	06	07	0W							
				2	-	3	2	04	-	ОX	06	-	OW							
35	R2012 3	9			4	3	-	04	05	-	06	07	-	1.70	36500	56200	1 0 2 5	1210	710	840
			1		4	3	2	04	05	ОX	06	07	0W							
				2	-	3	2	04	-	0X	06	-	0W							
SKS																				
15	R2010 1	9			4	3	-	04	05	-	06	07	-	0.10	4500	5600	44	55	16	19
			1		4	3	-	04	05	OX	06	07	0W							
				-	-	-	-	-	-	-	-	-	-							
20	R2010 8	9			4	3	-	04	05	-	06	07	-	0.25	8200	9400	125	115	45	40
			1		4	3	-	04	05	0X	06	07	OW							
	D 0010.0				-	-	-	-	-	-	-	-	-	0.05	10500	10000	105	100	70	
25	R2010 2	9	- 1		4	3	-	04	05	-	06	07	-	0.35	10500	12600	195	180	70	65
			1		4	3	-	04	05	ОХ	06	07	OW							
30	R2010 7	9		_	- 4	-	-	- 04	- 05	_	- 06	07	-	0.60	14500	17200	320	295	110	105
30	LZ010 /	3	1		4	3	_	04	05		06	07	- 0W	0.00	14300	1/200	320	290	110	103
			T		4	3		04	00	UX.	00	07	0 0 0							
35	R2010 3	9			4	3	_	04	05		06	07	_	0.90	19200	22400	545	485	170	170 150
33	112010 3	3	1		4	3		04	05		06	07	 OW	0.90	13300	22400	545	400	110	100
			T	_	-	_	_			-		_								
E.g.:	R2010 7		1	1		3		04			1				<u> </u>	1	<u>I</u>		I	

1) Only for accuracy classes N and H

2) Load ratings and load moments for ball runner block without ball chain. Load ratings and load moments for ball runner block with ball chain 🕫 14

Determination of the dynamic load capacities and load moments is based on a stroke travel of 100,000 m according to DIN ISO 14728-1. Often only 50,000 m are actually stipulated. For comparison: Multiply the values C, M_t and M_L by 1.26 according to the table.

Note

Dimensions, dimensional drawing see standard ball runner block BSHP

Product description

General notes on the Resist CR ball runner block

- ► For material numbers, please refer to the following pages.
- Dimensions, dimensional drawing, dynamic characteristics, load ratings, rigidity and moments see corresponding standard ball runner blocks made of steel
- Steel ball runner block body with corrosion resistant coating, matte-silver finish, hard chrome plated.
- Pre-lubricated

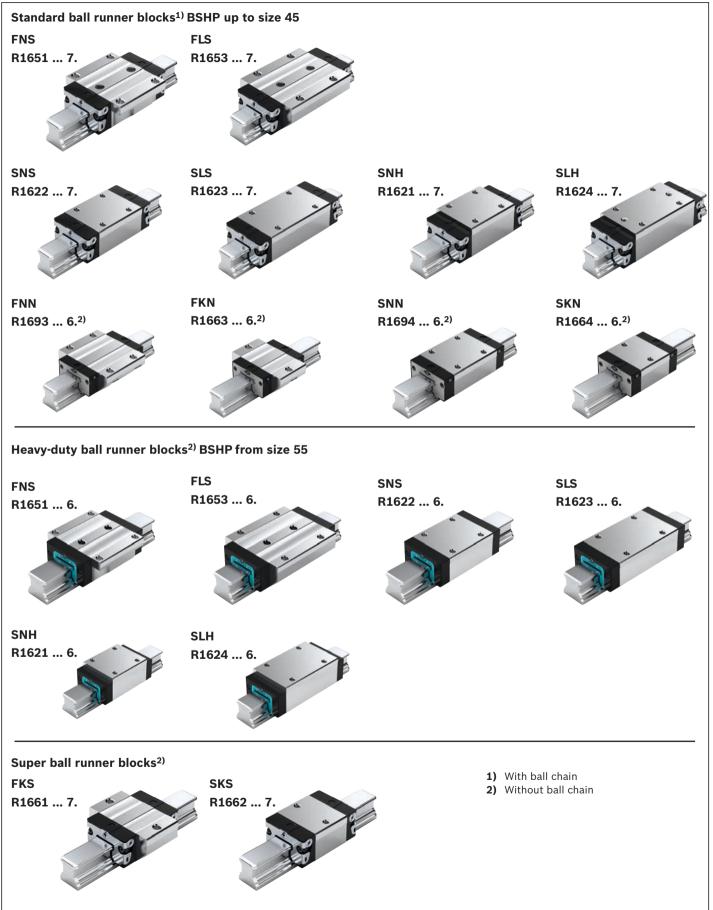
For ball runner blocks and ball guide rails Resist CR, matte-silver, hard chrome plated, deviating tolerances of the dimensions H and A_3 are to be observed (see "Accuracy classes and their tolerances").

Recommended ball runner blocks for Resist CR ball guide rails of accuracy class H and preload class C0 and C1

Re	commended ball runner
blo	ocks
Siz	zes 15 – 65
	Accuracy class H
	Preload class C0

Recommended ball runner blocks Sizes 30 – 65 Accuracy class H

Preload class C1


Definition of the format of ball runner blocks

Criterion	Designation	Code	Code (example)						
		F	Ν	S					
Width	Flange (F)	F							
	Slimline (S)	S							
	Wide (B)	В							
	Compact (C)	С							
Length	Normal (N)		Ν						
	Long (L)		L						
	Short (K)		K						
Height	Standard height (S)			S					
	High (H)			Н					
	Low (N)			Ν					

Ball chain (optional)

Optimized noise level

Overview of formats