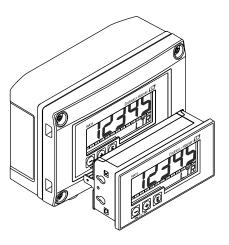
Products Solutions

Services


Valid as of firmware version: ISU00XA: V01.06.xx ISU01XA: V01.05.xx ISU03XA: V01.06.xx

Operating Instructions **RIA15**

Loop-powered 4 to 20 mA process indicator with $HART^{\circledR}$ communication

RIA15 Table of contents

Table of contents

1	About this document 4	8.4	Operating matrix in conjunction with the	
1.1 1.2	Document function	8.5	Waterpilot FMX21 Operating matrix in conjunction with the	
1.3	Registered trademarks 5	8.6	Gammapilot FMG50	48
2	Safety instructions 6	8.7	Proservo NMS8x	52
2.1	Requirements for the personnel 6	0.7	Liquiline CM82	54
2.2 2.3	Designated use 6 Workplace safety	9	Troubleshooting	59
2.4	Operational safety 6	9.1	Error limits as per NAMUR NE 43	
2.5	Product safety	9.2	Diagnostic messages	59
3	Product description 8	9.3 9.4	Spare parts	63
3.1	Function 8	7.4	compatibility	63
3.2	Operating modes 8			
3.3	Input channels	10	Maintenance	64
4	Identification	11	Return	64
4.1	Nameplate			
4.2 4.3	Scope of delivery	12	Disposal	
4.4	HART® protocol certification 21	12.1	IT security	
5	Mounting	12.2 12.3	Disassembling the measuring device Disposing of the measuring device	
5.1	Incoming acceptance, transport, storage 22	13	Accessories	65
5.2	Installation conditions	13.1	Device-specific accessories	
5.3 5.4	Installation instructions22Post-installation check27	13.1	Service-specific accessories	
6	Wiring 28	14	Technical data	67
6.1	Quick wiring guide	14.1	Input	. 67
6.2	Connection in 4 to 20 mA mode 29	14.2	Power supply	. 67
6.3	Connection in HART mode 29	14.3	Performance characteristics	
6.4	Wiring with switchable backlighting 34	14.4 14.5	Installation	
6.5	Inserting the cable, field housing 36	14.5	Mechanical construction	
6.6 6.7	Shielding and grounding	14.7	Operability	70
6.8	Degree of protection	14.8	Certificates and approvals	
6.9	Post-connection check			
		15	HART® communication	72
7	Operation	15.1	HART® protocol command classes	
7.1	Operating functions	15.2	HART® commands used	
_	_	15.3 15.4	Field device status	
8	Commissioning 41	15.4	HART® protocol connection types	
8.1	Post-installation check and switching on the	15.6	Device variables for multivariable measuring	
8.2	device		devices	79
8.3	Operating matrix in conjunction with the	, .		
	Micropilot FMR20	inde	x	80
		i		

Endress+Hauser

3

About this document RIA15

1 About this document

1.1 Document function

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Document conventions

1.2.1 Safety symbols

⚠ DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

▲ WARNING

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

A CAUTION

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

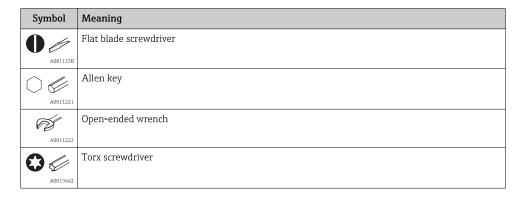
This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

Symbol	Meaning
	Direct current
~	Alternating current
$\overline{\sim}$	Direct current and alternating current
<u></u>	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Protective Earth (PE) A terminal which must be connected to ground prior to establishing any other connections.
	The ground terminals are situated inside and outside the device: Inner ground terminal: Connects the protectiv earth to the mains supply. Outer ground terminal: Connects the device to the plant grounding system.

1.2.3 Symbols for certain types of information

Symbol	Meaning
✓	Permitted Procedures, processes or actions that are permitted.
✓ ✓	Preferred Procedures, processes or actions that are preferred.
X	Forbidden Procedures, processes or actions that are forbidden.


RIA15 About this document

Symbol	Meaning
i	Tip Indicates additional information.
(i)	Reference to documentation.
A ^T	Reference to page.
	Reference to graphic.
>	Notice or individual step to be observed.
1., 2., 3	Series of steps.
L	Result of a step.
?	Help in the event of a problem.
	Visual inspection.

1.2.4 Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1. , 2. , 3	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
≋➡	Flow direction
A0013441	
A0011187	Hazardous area Indicates a hazardous area.
A0011188	Safe area (non-hazardous area) Indicates a non-hazardous area.

1.2.5 Tool symbols

5

1.3 Registered trademarks

HART®

Registered trademark of the HART® Communication Foundation

Safety instructions RIA15

2 Safety instructions

2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- Trained, qualified specialists must have a relevant qualification for this specific function and task.
- ► Are authorized by the plant owner/operator.
- ► Are familiar with federal/national regulations.
- Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- ► Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:

- Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
- ▶ Follow the instructions in this manual.

2.2 Designated use

The process indicator displays analog process variables or HART $^{\circ}$ process variables on its screen.

By means of HART® communication, selected Endress+Hauser field devices/sensors (with the appropriate option) can also be very flexibly configured and commissioned or their status messages read out and displayed.

4 to 20 mAThe device is powered via the current loop and does not require an additional power supply.

- The manufacturer accepts no liability for damages resulting from incorrect use or use other than that designated. It is not permitted to convert or modify the device in any way.
- Panel-mounted device:
 - The device is designed for installation in a panel and must only be operated in an installed state.
- Field device:
 - The device is designed for installation in the field.
- The device may be operated only under the permitted ambient conditions \rightarrow \triangleq 68.

2.3 Workplace safety

For work on and with the device:

Wear the required personal protective equipment according to federal/national regulations.

2.4 Operational safety

Risk of injury.

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ► The operator is responsible for interference-free operation of the device.

RIA15 Safety instructions

Conversions to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.

▶ If, despite this, modifications are required, consult with Endress+Hauser.

Repair

To ensure continued operational safety and reliability,

- ► Carry out repairs on the device only if they are expressly permitted.
- ▶ Observe federal/national regulations pertaining to repair of an electrical device.
- ▶ Use original spare parts and accessories from Endress+Hauser only.

2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It also complies with the EC directives listed in the device-specific EC Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

Product description RIA15

3 Product description

3.1 Function

The RIA15 process indicator is incorporated into the 4 to 20 mA/HART $^{\circ}$ loop and displays the measuring signal in digital form. The process indicator does not require an external power supply. It is powered directly from the current loop.

By means of HART® communication, the RIA15 enables extremely flexible configuration and commissioning of selected field devices and readouts of device/sensor status messages. The prerequisite is that the RIA15 was ordered with the appropriate "level" or "analysis" option (e.g. RIA15 level option FMR20 + FMX21 + FMG50).

Detailed description of supported applications $\rightarrow \implies 9$

The device meets the requirements of the HART® communication protocol specifications and can be used with devices with HART® Revision ≥ 5.0 .

3.2 Operating modes

The process indicator can be used purely as an indicator or as an indicator with an onsite configuration/diagnostic function.

3.2.1 Display functions

The indicator supports two different display modes:

4 to 20 mA mode:

In this operating mode, the process indicator is incorporated into the 4 to 20 mA current loop and measures the transmitted current. The variable calculated based on the current value and range limits is displayed in digital form on the 5-digit LCD. In addition, the associated unit and a bar graph can be displayed.

HART mode:

The device functions as an indicator even when operating with a HART® sensor/actuator. In this case, the indicator is also powered from the current loop.

The process indicator can choose to function as a primary master or secondary master (default) in the HART® loop. When it functions as a master, the device can read process values from the measuring device and display them. HART® communication operates on the principle of master/slave. As a general rule, the sensor/actuator is a slave and only transmits information if a request has been made by the master.

A HART® loop can have a maximum of two HART® masters at any one time. A distinction is made between primary (e.g. the control system) and secondary master (e.g. handheld terminal for on-site operation of the measuring devices) for these HART® masters. The two masters in the loop/in the network cannot be masters of the same type, e.g. they cannot be two "secondary masters".

If a third HART® master is added to the network, one of the other masters must be disabled; otherwise a collision occurs in the network.

If the process indicator is operating as "secondary master" and another "secondary master", e.g. a handheld device, is added to the network, the device interrupts HART® communication as soon as it detects that there is another "secondary master". The display alternates between error message C970 "Multi master collision" and "- - -". A measured value is not displayed in this case. The device leaves the HART® loop for 30 seconds and tries to re-establish HART® communication once again. Once the additional "secondary

RIA15 Product description

master" is removed from the network, the device continues communication and displays the measured values of the sensor/actuator once more.

Please note that if two process indicators are to be used in a Multidrop connection, one device must be configured as the "primary master" and the other as the "secondary master" to prevent a master collision.

In HART® mode, the process indicator can display up to four device variables of a multivariable measuring device. These variables are referred to as the Primary Variable (PV), Secondary Variable (SV), Tertiary Variable (TV) and Quaternary Variable (QV). These variables are placeholders for measured values that can be called up using HART® communication.

For a flowmeter, such as the Promass, these four values can be as follows:

- Primary process variable (PV) → Mass flow
- Secondary process variable (SV) \rightarrow Totalizer 1
- Third process variable (TV) → Density
- Fourth process variable (QV) \rightarrow Temperature

The HART® section at the end of these Operating Instructions provides examples of these four device variables for multivariable measuring devices $\rightarrow \blacksquare 79$.

Please refer to the Operating Instructions for each device for details on the variables that are set as default on the sensor/actuator and how they can be changed.

The process indicator can show each of these values. The individual values must be activated in the **SETUP – HART1** to **HART4** menu for this purpose. The individual parameters are assigned to fixed process variables in the device in this case:

HART1 = PV

HART2 = SV

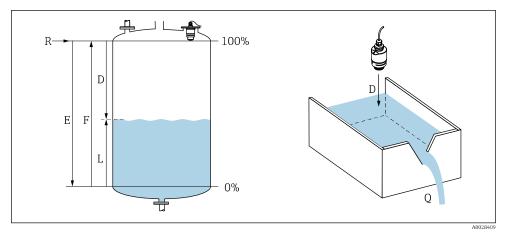
HART3 = TV

HART4 = OV

For example, if the PV and TV are to be displayed on the process indicator, **HART1** and **HART3** must be activated.

The values can either be shown alternately on the process indicator or one value is displayed continuously and the other values are only shown by pressing '+' or '-'. The switching time can be configured in the **EXPRT - SYSTM - TOGTM** menu.

3.2.2 The RIA15 as an indicator with configuration function


For specific sensors/transmitters from Endress+Hauser, the RIA15 can be used for configuration/diagnostics in addition to its display function.

The RIA15 as a remote indicator and for operation of the Micropilot FMR20

The Micropilot is a "downward-looking" measuring system, which works in accordance with the time-of-flight (ToF) method. It measures the distance from the reference point (process connection of measuring device) to the surface of the medium. Radar pulses are transmitted via an antenna, reflected off the surface of the medium and received back by the radar system.

In the HART® mode, the RIA15 with the "level" option supports basic configuration of the FMR20. The FMR20 can be adjusted under the **SETUP** \rightarrow **LEVEL** menu item (see operating matrix). The value displayed on the RIA15 in display mode corresponds to the distance measured or, if linearization is enabled, to a percentage value. The temperature can also be displayed.

Product description RIA15

- Micropilot FMR20 calibration parameters
- E Empty calibration (= zero)
- F Full calibration (= span)
- D Measured distance
- L Level (L = E D)
- Q Flow rate at measuring weirs or channels (calculated from the level using linearization)

Operating principle of the FMR20

The reflected radar impulses are received by the antenna and transmitted into the electronics. There, a microprocessor evaluates the signals and identifies the level echo caused by the reflection of the radar pulses off the surface of the medium.

The distance ${\bf D}$ to the surface of the medium is proportional to the time-of-flight ${\bf t}$ of the pulse:

 $D = c \cdot t/2$,

where \mathbf{c} is the speed of light.

Based on the known empty distance E, the level L is calculated:

L = E - D

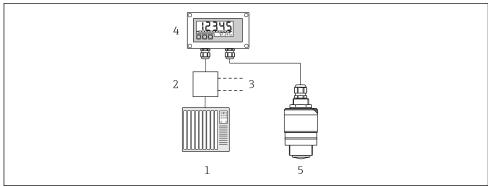
The Micropilot is calibrated by entering the empty distance \mathbf{E} (= zero point) and the full distance \mathbf{F} (= span).

Outputs and basic commissioning of the FMR20

The RIA15 can be used as a local indicator of measured values as well as for the basic commissioning of the Micropilot FMR20 radar level sensor via $HART^{\otimes}$.

The following values are output here:

Digital output (HART®):


PV: Level linearized

SV: Distance

TV: Relative echo amplitude

QV: Temperature (sensor)

RIA15 Product description

A003096

■ 2 Remote operation of FMR20 via RIA15

- 1 PLC
- 2 Transmitter power supply, e.g. RN221N (with communication resistor)
- 3 Connection for Commubox FXA195 and Field Communicator 375, 475
- 4 Loop-powered RIA15 process indicator
- 5 FMR20 transmitter

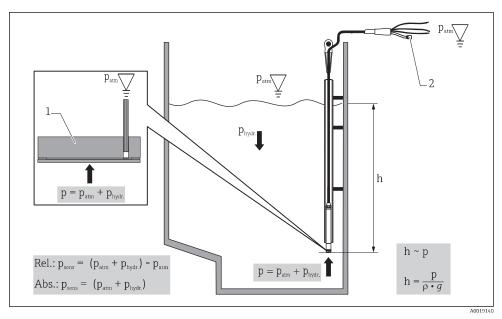
The following settings for the FMR20 can be made using the three operating keys on the front of the RIA15:

- Unit
- Empty and full calibration
- Mapping area if the measured distance does not match the actual distance

Further information on the operating parameters $\rightarrow \triangleq 45$

To avail of these functions, the RIA15 can be ordered together with the FMR20 using the FMR20 product structure or ordered separately with option 3 "4 to 20 mA current signal + HART + level" in oder code 030 "Input".

The RIA15 as a remote indicator and for operation of the Waterpilot FMX2


The Waterpilot is a transmitter with a capacitance, oil-free ceramic measuring cell for hydrostatic level measurement. The device with integrated temperature measurement is certified for drinking water applications. A version for wastewater applications and sludges as well as a metal-free version for use in saltwater are also available.

In the HART® mode, the RIA15 with the "level" option supports basic configuration of the FMX21. The FMX21 can be adjusted under the **SETUP** \rightarrow **LEVEL** menu item (see operating matrix). The value displayed on the RIA15 in display mode corresponds to the level measured (initial setting). The pressure and the temperature can also be displayed.

When the **LEVEL** menu is called up, the RIA15 automatically performs the following initial settings on the FMX21:

- Measuring mode: Level
- Calibration mode: dry
- Level selection: in pressure
- Lin mode: linear

Product description RIA15

■ 3 Waterpilot FMX21 calibration parameters

- 1 Ceramic measuring cell
- 2 Pressure compensation tube
- h Level height
- p Total pressure = atmospheric pressure + hydrostatic pressure
- ρ Density of the medium
- g Gravitational acceleration

 $P_{hydr.}$ Hydrostatic pressure

 P_{atm} Atmospheric pressure

 P_{sens} Pressure displayed on the sensor

Operating principle of the FMX21

The total pressure, comprising atmospheric pressure and hydrostatic pressure, acts directly on the process isolating diaphragm of the Waterpilot FMX21. Changes in air pressure are guided through a cable gland with pressure compensation membrane installed in the RIA15 via the pressure compensation tube in the extension cable to the rear of the ceramic process isolating diaphragm in the FMX21 and are compensated for.

A pressure-dependent change in capacitance, caused by the movement of the process isolating diaphragm, is measured at the electrodes of the ceramic carrier. The electronics unit then converts this to a signal that is proportional to the pressure and linear to the level.

The Waterpilot FMX21 is calibrated by configuring the lower-range value and the upper-range value by entering pressure and level values. For devices with a gauge pressure sensor, there is the option of performing a zero-point adjustment.

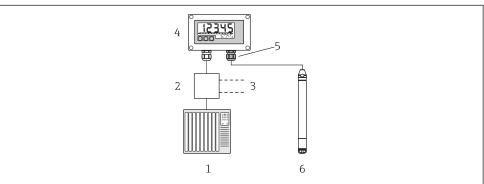
The preset span corresponds to 0 to URL, where **URL** is the upper range limit of the selected sensor. A different span can be ordered from the factory by selecting a customer-specific measuring range.

Output and basic commissioning of the FMX21

The RIA15 can be used as a local indicator as well as for the basic commissioning of the Waterpilot FMX21 hydrostatic level sensor via $HART^{\$}$.

RIA15 Product description

The following values are output here:


Digital output (HART®):

PV: Level linearized

SV: Measured pressure

TV: Pressure after position adjustment

QV: Temperature (sensor)

VUU3 E 0 3

 \blacksquare 4 Remote operation of the FMX21 via RIA15

- 1 PLC
- 2 Transmitter power supply, e.g. RN221N (with communication resistor)
- 3 Connection for Commubox FXA195 and Field Communicator 375, 475
- 4 Loop-powered RIA15 process indicator
- 5 Cable gland M16 with pressure compensation membrane
- 6 FMX21 transmitter

The following settings for the FMX21 can be made using the three operating keys on the front of the RIA15:

- Pressure unit
- Level unit
- Temperature unit
- Zero adjustment (only for gauge pressure sensors)
- Empty and full pressure adjustment
- Empty and full level adjustment
- Reset to factory defaults

Further information on the operating parameters $\rightarrow \triangleq 46$

To avail of these functions, the RIA15 can be ordered together with the FMX21 using the FMX21 product structure. Alternatively, the RIA15 can be ordered separately with option 3 "4 to 20 mA current signal + HART + level" in oder code 030 "Input".

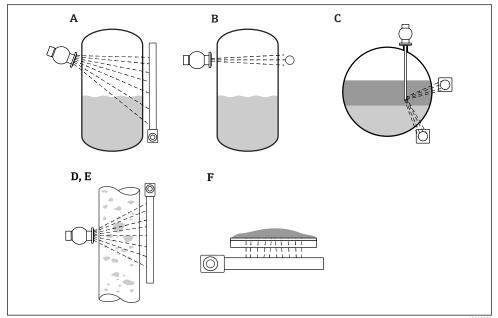
NOTICE

Compensation of atmospheric pressure

- ▶ When installing the FMX21, compensation of the atmospheric pressure must be guaranteed. Pressure compensation takes place through a pressure compensation tube in the extension cable of the FMX21 in conjunction with a special cable gland with integrated pressure compensation membrane, which must be attached on the right of the RIA15. This cable gland is supplied in black so that it can be easily distinguished from other cable glands.
- ► If necessary, the cable gland with integrated pressure compensation membrane can be ordered as a spare part at a later stage → 🖺 65.

The RIA15 as a remote indicator and for operation of the Gammapilot FMG50

The Gammapilot FMG50 is a compact transmitter for non-contact measurement through vessel walls.


Product description RIA15

Applications

- Measurement of level, interface, density and concentration, as well as point level detection
- Measurement in liquids, solids, suspensions or sludges
- Use under extreme process conditions
- All types of process vessels

Operating principle of the Gammapilot FMG50

The radiometric measuring principle is based on the fact that gamma radiation experiences attenuation when it penetrates materials. Radiometric measurement can be used for a variety of measuring tasks:

A00181

- 5 Measuring tasks of the Micropilot FMG50
- A Continuous level measurement
- B Point level detection
- C Interface measurement
- D Density measurement
- E Concentration measurement (density measurement followed by linearization)
- F Concentration measurement with radiating media

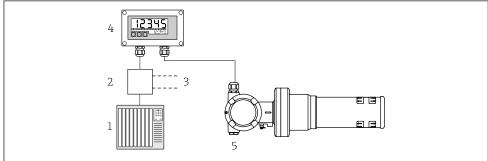
Continuous level measurement

A source container with a radiation source and a Gammapilot FMG50 (to receive the gamma radiation) are mounted on opposite sides of a vessel. The radiation given off by the radiation source is absorbed by the medium in the vessel. The higher the level rises, the more radiation is absorbed by the medium. This means that the Gammapilot FMG50 receives less radiation the more the level of the medium rises. This effect is used to determine the current level of the medium in the vessel. As the Gammapilot FMG50 is available in different lengths, the detector can be used for measuring ranges of different sizes.

Point level detection

A source container with a radiation source and a Gammapilot FMG50 (to receive the gamma radiation) are mounted on opposite sides of a vessel. The radiation given off by the radiation source is absorbed by the medium in the vessel. In the case of point level detection, the radiation received by the Gammapilot FMG50 is normally absorbed completely if the beam path between the radiation source and the detector is completely filled with medium. In this case, the level of the medium in the vessel is at the defined

RIA15 Product description


limit value. The Gammapilot FMG50 indicates the uncovered state (no medium in the beam path) as 0% and the covered state (beam path filled with medium) as 100%.

Density measurement

A source container with a radiation source and a Gammapilot FMG50 (to receive the gamma radiation) are mounted on opposite sides of a pipe. The radiation given off by the radiation source is absorbed by the medium in the vessel. The denser the medium in the beam path between the radiation source and the detector, the more radiation is absorbed. The Gammapilot FMG50 therefore receives less radiation the more the density of the medium increases. This effect is used to determine the current density of the medium in the vessel. The density unit can be selected via a menu.

Outputs and basic configuration of the FMG50

The RIA15 can be used as a local indicator for measured values and for the basic configuration of the Gammapilot FMG50 via HART®. 4 HART output values (PV, SV, TV and QV) can be configured via the FMG50.

A0040326

■ 6 Remote operation of the FMG50 via RIA15

- 1 PLC
- 2 Transmitter power supply, e.g. RN221N (with communication resistor)
- 3 Connection for Commubox FXA195 and Field Communicator 375, 475
- 4 Loop-powered RIA15 process indicator
- 5 Gammapilot FMG50

The following settings for the FMG50 can be made using the three operating keys on the front of the RIA15:

- Basic configuration of the "Level" operating mode (continuous level measurement)
- Basic configuration of the "Point Level" operating mode (point level detection)
- Basic configuration of the "Density" operating mode (density measurement)

Further information on the operating parameters $\rightarrow \triangleq 48$

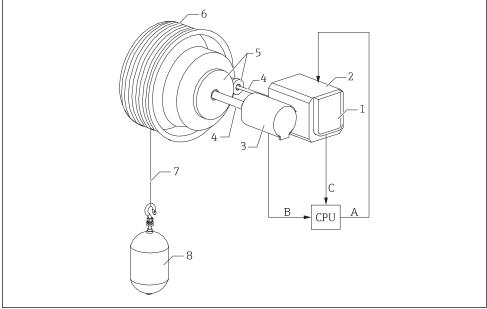
The following order options are available to be able to use this function:

- FMG50 product structure
- RIA15 product structure, feature 030 "Input":
 Option 3: "4 to 20 mA current signal + HART + level ... FMG50"

The RIA15 as a remote indicator and for operation of the Proservo NMS8x

The Proservo NMS8x series of intelligent tank gauges has been designed for highly accurate liquid level measurement in storage and process applications. The devices are perfectly tailored to the demands of tank inventory management, inventory control, custody transfer and loss control, while also offering cost savings and operational safety.

Operating principle of the NMS8x

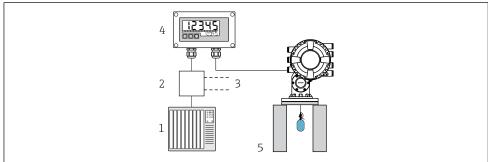

The NMS8x is an intelligent tank gauge for high-precision level measurement. The system is based on the principle of displacement. A small displacer is accurately positioned in a liquid using a stepping motor. The displacer is suspended from a measuring wire which is wound onto a finely grooved wire measuring drum. The NMS8x counts the rotations of the

RIA15 Product description

> measuring drum in order to calculate how much wire is unwound and therefore calculate the change in the liquid level.

> The drum is driven by coupling magnets that are completely separated from one another by the drum housing. The outer magnets are connected to the measuring drum, and the inner magnets are connected to the drive motor. As the inner magnets turn, their magnetic attraction causes the outer magnets to also turn, causing the entire drum assembly to rotate. The weight of the displacer on the wire causes a torque on the outer magnets, which causes a change in the magnetic flux. These changes acting between the components of the measuring drum are detected by a special electromagnetic transducer on the inner magnets. The transducer transmits the weight signal to a CPU according to a patented non-contact principle. The motor is actuated to keep the weight signal constant at a predefined value which was defined by the measurement command.

> When the displacer is lowered and touches the liquid, the weight of the displacer is reduced by the buoyancy force of the liquid, which is measured by a temperaturecompensated magnetic transducer. This causes the torque in the magnetic coupling to change, which is measured by six Hall effect sensors. A signal indicating the weight of the displacer is sent to the control circuit of the motor. Whenever the liquid levels rise or fall, the position of the displacer is adjusted accordingly by the drive motor. The rotation of the measuring drum is evaluated continuously to determine the level value using a magnetic rotary encoder. In addition to measuring the level, the NMS8x can also measure the interfaces between up to three liquid phases as well as the tank bottom, the spot density and profile density.


№ 7 NMS8x operating principle

- Displacer position data Α
- В Weight data
- 1 Encoder
- 2 Motor
- 3 Rotary encoder
- Shafts
- Gears
- 6 Measuring drum
- Measuring wire
- 8 Displacer

Outputs and basic configuration of the NMS8x

RIA15 Product description

The RIA15 can be used as a local indicator for measured values and for the basic configuration of the NMS8x. Furthermore, measurement commands can be sent to the NMS8x via HART® and the measuring status of the NMS8x can be displayed. 4 HART output values (PV, SV, TV and QV) can be configured via the NMS8x.

A00/0320

■ 8 Remote operation of the NMS8x via the RIA15

- 1 PLC
- 2 Transmitter power supply, e.g. RN221N (with communication resistor)
- 3 Connection for Commubox FXA195 and Field Communicator 375, 475
- 4 Loop-powered RIA15 process indicator
- 5 NMS8x

The following settings for the NMS8x can be made using the three operating keys on the front of the RIA15:

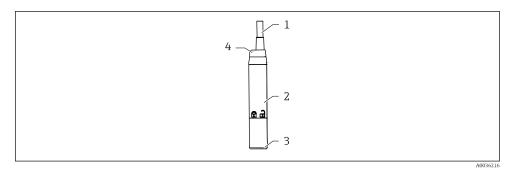
- Measurement command
- Measuring status
- Balance status

Further information on the operating parameters $\rightarrow \implies 52$

The following order options are available to be able to use this function:

- NMS8x product structure
- RIA15 product structure, feature 030 "Input":
 Option 5: "4 to 20 mA current signal + HART + level ... NMS8x"

The RIA15 as a remote indicator and for operation of the Liquiline CM82


The Liquiline CM82 is a compact two-wire single-channel transmitter for connecting digital sensors with Memosens technology. It is suitable for demanding applications in the Life Sciences, water/wastewater and chemical industries.

The RIA15 with the "analysis" option supports basic configuration of the CM82 in the HART® mode. The CM82 can be adjusted under the **SETUP** \rightarrow **CT** menu item (see operating matrix). The value displayed on the RIA15 in display mode corresponds to the measured value (default setting).

Operating principle of the CM82

Digital sensors are connected via Memosens to the Liquiline CM82 transmitter using Plug and Play. The sensor's Memosens technology digitizes the sensor's measured value and transfers it to the transmitter via a non-contact connection. The transmitter converts this measured value to a 4 to 20 mA and HART signal for direct connection to the PLC. Maintenance and commissioning of the transmitter can be performed via the Bluetooth interface using a smartphone, tablet or laptop. The RIA15 (HART®) can be used for basic configuration and local display of the measured values.

Product description RIA15

 \blacksquare 9 Design of the Liquiline CM82

- 1 Measuring cable
- 2 Housing
- 3 Memosens connection
- 4 LED for status display

Measuring ranges and sensor connection

The CM82 transmitter is designed for digital Memosens sensors with an inductive plug-in head. The Memosens sensor is easily connected to the CM82 using Plug and Play.

Sensor types	Sensors
Digital sensors with Memosens protocol without additional internal power supply	 pH sensors ORP sensors pH/ORP combination sensors Oxygen sensors Conductivity sensors

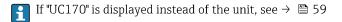
The measuring ranges are dependent on the connected sensor and can be found the relevant sensor documentation.

Local measured value display and basic commissioning of the CM82

The RIA15 can be used as a local indicator of the measured values as well as for the basic commissioning of the Liquiline CM82 via HART®.

The following values are output here:

Digital output (HART®): measured value and unit depending on the connected sensor

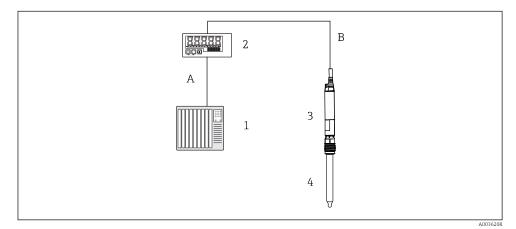

PV: Configured primary value (CMAIN operating parameter)

SV: Temperature (sensor)

TV: Dependent on the connected transmitter parameter + sensor type

QV: Dependent on the connected transmitter parameter + sensor type

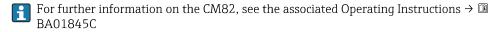
Transmitter parameter	Sensor type	"TV" value	"QV" value
рН	Glass	Raw value in mV	Glass impedance in MOhm
рН	ISFET	Raw value in mV	Leak current in nA
рН	ORP	Relative ORP value as %	Raw value in mV
рН	pH/ORP combined sensor	рН	ORP in mV
Conductivity		Resistance	Conductivity raw value
Dissolved oxygen		Liquid concentration	Saturation as %



RIA15 Product description

The following settings for the CM82 can be made using the three operating keys on the front of the RIA15:

- Units of connected sensor
- Current output range
- Retrieval of diagnostic information

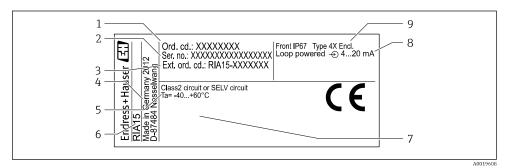

Further information on the operating parameters $\rightarrow \implies 54$

■ 10 Remote operation of the CM82 via the RIA15

- 1 PLC
- 2 Loop-powered RIA15 process indicator
- 3 CM82 transmitter
- 4 Memosens sensor (e.g. pH sensor)
- 5 Connection via Bluetooth to the SmartBlue App

To avail of these functions, the RIA15 can be ordered together with the CM82 using the CM82 product structure or ordered separately with option 4 "4 to 20 mA current signal + HART + analysis" in oder code 030 "Input".

3.3 Input channels


The process indicator has one analog 4 to 20 mA input. In "HART" operating mode, this channel can be used to retrieve and display HART® values of a connected sensor/actuator. Here, a HART® device can be directly connected to the process indicator in a point-to-point connection, or the process indicator can be incorporated into a HART® Multidrop network.

Identification RIA15

4 Identification

4.1 Nameplate

The nameplate is located on the right-hand side of the housing in the case of the field device, and on the rear of the housing in the case of the panel-mounted device.

■ 11 Nameplate of the process indicator (example)

- 1 Order code of the device
- 2 Serial number of the device
- 3 Extended order code of device
- 4 Manufacturer's address
- 5 Ambient temperature range

- 6 Device designation
- 7 Approvals (optional)
- 8 Input signal
- 9 Housing degree of protection

4.2 Scope of delivery

The scope of delivery of the device comprises:

- Panel-mounted device
 - Process indicator
 - Brief Operating Instructions
 - Ex Safety Instructions (optional)
 - Fastening fixtures
 - HART® communication resistance module (optional)
- Field device
 - Process indicator
 - Brief Operating Instructions
 - Ex Safety Instructions (optional)
 - Fastening fixtures for wall/pipe mounting (optional)
 - HART® communication resistance module (optional)
 - Cable glands (optional)
 - Weather protection cover (optional)

4.3 Certificates and approvals

4.3.1 CE mark

The product meets the requirements of the harmonized European standards. As such, it complies with the legal specifications of the EC directives. The manufacturer confirms successful testing of the product by affixing to it the CE-mark.

RIA15 Identification

4.3.2 EAC mark

The product meets the legal requirements of the EEU guidelines. The manufacturer confirms the successful testing of the product by affixing the EAC mark.

4.4 HART® protocol certification

The RIA15 is registered by the HART® Communication Foundation. The device fulfills the requirements of HCF Specification, Revision 7.1. This version is downwards compatible with all sensors/actuators with HART® versions ≥ 5.0 .

Mounting RIA15

5 Mounting

5.1 Incoming acceptance, transport, storage

Compliance with the permitted environmental and storage conditions is mandatory. Exact specifications for this are provided in the "Technical data" section.

5.1.1 Incoming acceptance

On receipt of the goods, check the following points:

- Is the packaging or the content damaged?
- Is the delivery complete? Compare the scope of delivery against the information on your order form.

5.1.2 Transport and storage

Please note the following:

- Pack the device so that is protected against impact for storage and transport. The original packaging provides optimum protection.
- The permitted storage temperature is -40 to +85 °C (-40 to +185 °F); it is possible to store the device at borderline temperatures for a limited period (48 hours maximum).

5.2 Installation conditions

At temperatures below -25 °C (-13 °F) the readability of the display can no longer be guaranteed.

5.2.1 Indicator in the panel-mount housing

Permitted ambient temperature range -40 to 60 °C (-40 to 140 °F), horizontal orientation. IP65 protection at front, IP20 at rear.

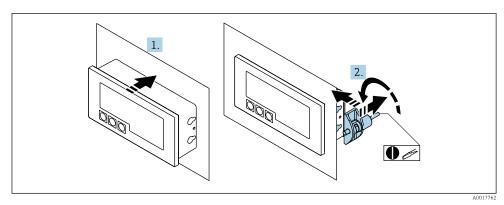
See "Technical data" section .

5.2.2 Indicator in the field housing

Aluminum housing: Permitted ambient temperature -40 to 60 °C (-40 to 140 °F).

Degree of protection IP66/67, NEMA 4x

Plastic housing: Permitted ambient temperature -40 to 60 °C (-40 to 140 °F).


Degree of protection IP66/67

See "Technical data" section .

5.3 Installation instructions

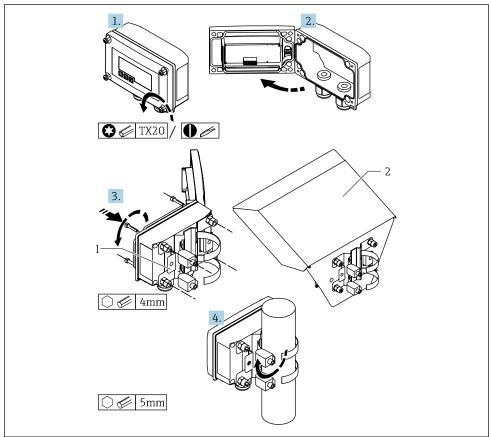
RIA15 Mounting

5.3.1 Panel housing

Installation instructions for the panel housing

Installation in a panel with a panel cutout 92x45 mm (3.62x1.77 in), max. panel thickness 13 mm (0.51 in).

1. Slot the device into the panel cutout from the front.

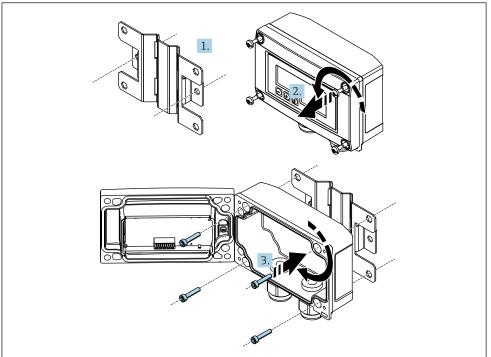

2. Fit the mounting clips on the side of the housing and tighten the threaded rods.

Mounting RIA15

5.3.2 Field housing

Pipe mounting (with optional mounting kit)

The device can be mounted on a pipe with a diameter of up to 50.8 mm (2 in) with the mounting kit (optionally available).


A00177

- \blacksquare 13 Mounting the process indicator on a pipe
- 1 Mounting plate for pipe/wall mounting
- 2 Weather protection cover (optional)
- 1. Release the 4 housing screws
- 2. Open the housing
- 3. Secure the mounting plate to the rear of the device with 4 screws supplied. The optional weather protection cover can be secured between the device and the mounting plate.
- 4. Guide the two gripper clamps through the mounting plate, fit them around the pipe and tighten.

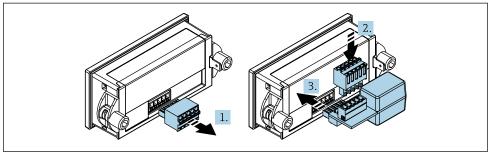
RIA15 Mounting

Wall mounting

With optionally available mounting kit.

A001780

- 1. Use the mounting plate as a stencil for 2 6 mm (0.24 in)bore holes, 82 mm (3.23 in)apart, and secure the plate on the wall with 2 screws (not supplied).
- 2. Open the housing.
- 3. Secure the indicator on the mounting plate with the 4 screws supplied.
- 4. Close the cover and tighten the screws.

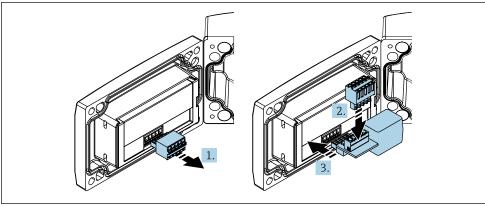

Without a mounting kit.

- 1. Open the housing.
- 2. Use the device as a stencil for 4 6 mm (0.24 in)bore holes, 99 mm (3.9 in)apart on the horizontal plane, 66 mm (2.6 in)apart on the vertical plane.
- 3. Secure the indicator on the wall with 4 screws.
- 4. Close the cover and tighten the housing screws.

Mounting RIA15

5.3.3 Installing the optional HART $^{\circ}$ communication resistance module

Panel housing



A002078

■ 15 Installing the optional HART® communication resistance module

- 1. Disconnect plug-in terminal block.
- 2. Insert the terminal block into the slot provided on the HART® communication resistance module.
- 3. Insert the HART® communication resistance module into the slot in the housing.

Field housing

A0020844

lacktriangledown 16 Installing the optional HART $^{\circ}$ communication resistance module

- 1. Disconnect plug-in terminal block.
- 2. Insert the terminal block into the slot provided on the HART® communication resistance module.
- 3. Insert the HART® communication resistance module into the slot in the housing.

RIA15 Mounting

5.4 Post-installation check

5.4.1 Display unit in the panel-mount housing

- Is the seal undamaged?
- Are the mounting clips securely fastened on the housing of the device?
- Are the threaded rods properly tightened?
- Is the device located in the center of the panel cutout?

5.4.2 Display unit in the field housing

- Is the seal undamaged?
- Is the housing firmly screwed to the mounting plate?
- Is the mounting bracket firmly secured on the wall/pipe?
- Are the housing screws firmly tightened?

Wiring RIA15

6 Wiring

A WARNING

Danger! Electric voltage!

▶ The entire connection of the device must take place while the device is de-energized.

Only certified devices (optionally available) may be connected in the hazardous area

▶ Observe corresponding notes and wiring diagrams in the Ex-specific supplement to these Operating Instructions. If you have any questions, please do not hesitate to contact your E+H representative.

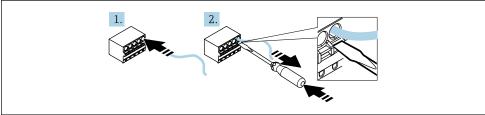
NOTICE

SELV/Class 2 device

► The device may be powered only by a power unit with an energy-limited circuit in accordance with UL/EN/IEC 61010-1 Paragraph 9.4 or Class 2 as per UL 1310: 'SELV or Class 2 circuit'.

Device destroyed if current too high

▶ Do not operate the device at a voltage source without a current limiter. Instead, operate the device only in the current loop with a transmitter.


Panel housing:

The terminals are located on the rear of the housing.

Field housing:

The terminals are located inside the housing. The device has two M16 cable entries. The housing must be opened for wiring purposes.

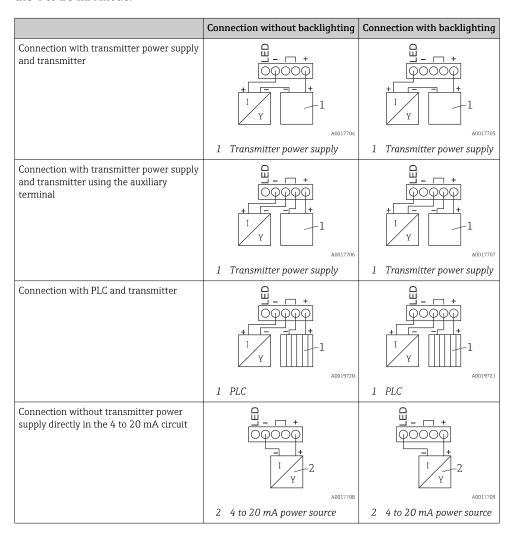
Operation of the spring terminals

A0020848

■ 17 Operation of the spring terminals

- 1. If using rigid cables or flexible cables with a ferrule, insert only the cable into the terminal to connect. No tools required. If using flexible cables without ferrules, the spring mechanism must be activated as shown in step 2.
- 2. In order to loosen the cable, push the spring mechanism in completely using a screwdriver or other suitable tool and pull out the cable.

6.1 Quick wiring guide


Terminal	Description
+	Positive connection, current measurement
-	Negative connection, current measurement (without backlighting)
LED	Negative connection, current measurement (with backlighting)

RIA15 Wiring

Terminal	Description
	Auxiliary terminals (electrically connected internally)
÷	Functional grounding: Panel-mounted device: Terminal on the rear of the housing Field device: Terminal in the housing

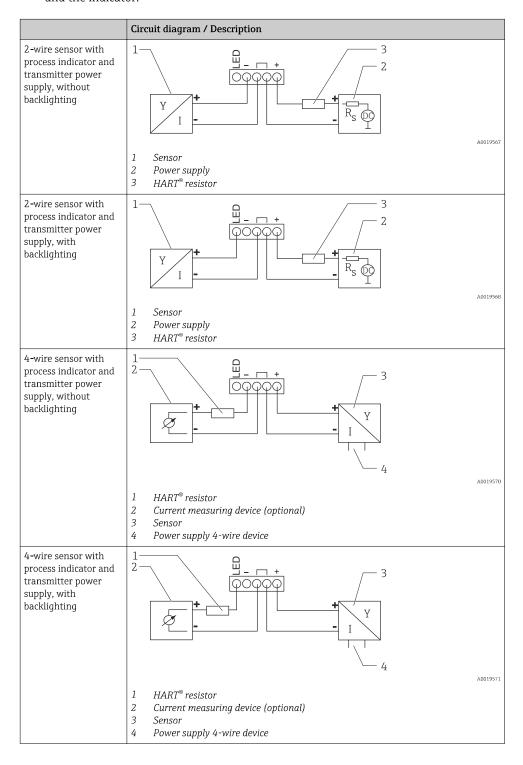
6.2 Connection in 4 to 20 mA mode

The following diagrams show in a simplified way how the process indicator is connected in the 4 to $20\ \text{mA}$ mode.

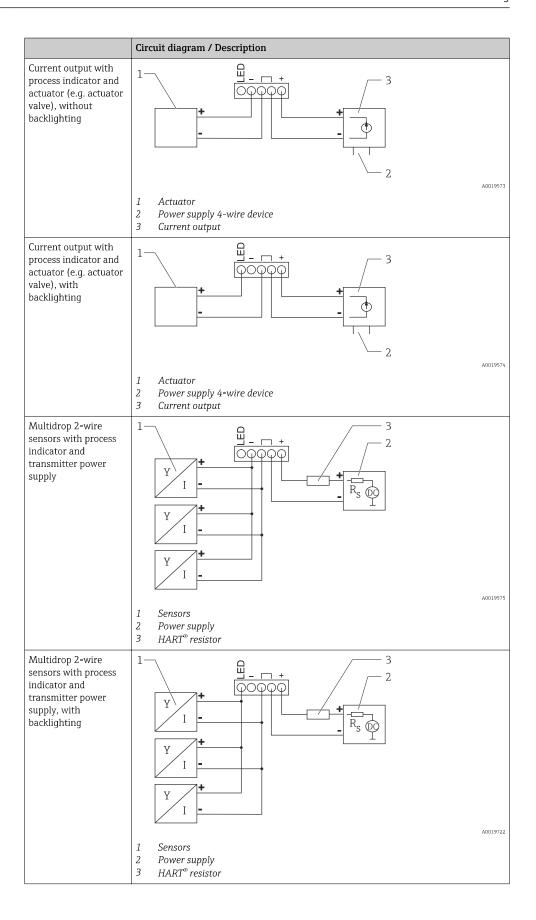
6.3 Connection in HART mode

The following diagrams show in a simplified way how the process indicator is connected in the HART mode.

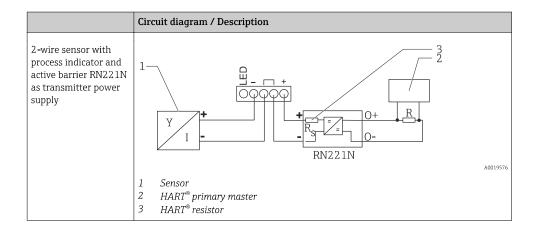
Wiring RIA15


6.3.1 HART® connection

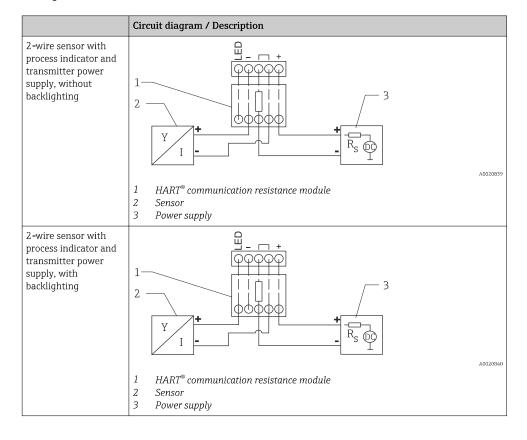
NOTICE

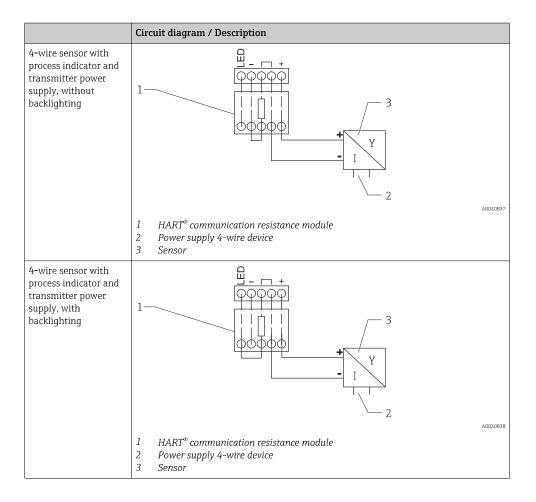

Undefined behavior due to incorrect wiring of an actuator

► When installing the process indicator together with an actuator, the Operating Instructions for the actuator must be followed!


The 230 Ω HART® communication resistor in the signal line is always necessary in the case of a low-impedance power supply. It must be installed between the power supply and the indicator.

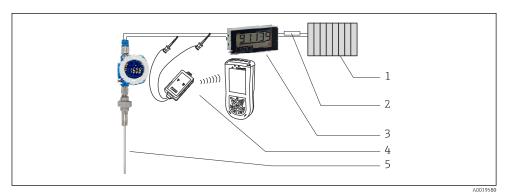
RIA15 Wiring


Wiring RIA15


Optional HART® communication resistance module

To install the HART $^{\circ}$ communication resistance module, see the Installation section $\rightarrow \; \trianglerighteq \; 26$

Wiring



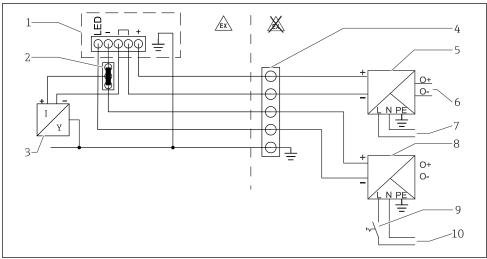
RIA15 Wiring

Configuration of HART® devices

HART® devices are generally not configured via the process indicator. Configuration is done using the Field Xpert SFX100 device configurator, for example. An exception to this is the special options (e.g. RIA15 level & analysis option).

Configuration of HART® devices; example TMT162

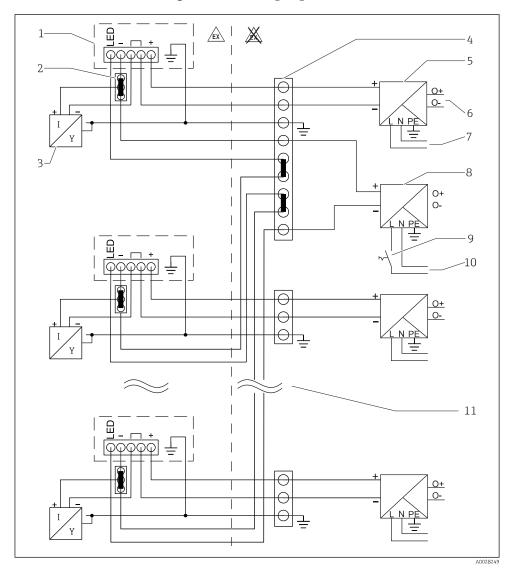
- 1 HART® primary master (e.g. PLC)
- 2 HART® resistor
- 3 RIA15 process indicator
- $4 \qquad \textit{HART}^{\texttt{@}} \ \textit{handheld terminal, e.g. Field Xpert SFX} 100$
- 5 Sensor with HART® transmitter, e.g. TMT162


Wiring RIA15

6.4 Wiring with switchable backlighting

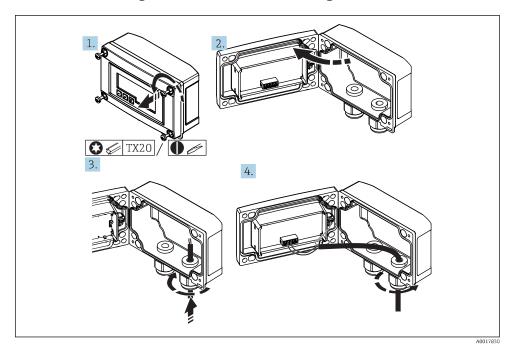
An additional current-limited current source, e.g. the RN221N active barrier, is required to implement switchable backlighting. This current source is used to power the LED backlighting of up to seven RIA15 process indicators without generating an additional voltage drop in the measuring loop. The backlighting can be switched on and off using an external switch.

The following shows connection examples for the hazardous area. Wiring is similar for the non-hazardous area; however, it is not necessary to use Ex-certified devices.


6.4.1 Connection diagram for one process indicator

- 1 Process indicator RIA15
- 2 3-wire connector, e.g. WAGO 221 series
- 3 2-wire sensor
- 4 Terminal block on DIN rail
- 5 Active barrier, e.g. RN221N
- 6 4 to 20 mA output to the control unit
- 7 Power supply
- 8 Current source, e.g. RN221N
- 9 Switch to activate backlighting
- 10 Power supply

RIA15 Wiring


6.4.2 Connection diagram for multiple process indicators

- 1 Process indicator RIA15
- 2 3-wire connector, e.g. WAGO 221 series
- 3 2-wire senso
- 4 Terminal block on DIN rail
- 5 Active barrier, e.g. RN221N
- 6 4 to 20 mA output to the control unit
- 7 Power supply
- 8 Current source, e.g. RN221N
- 9 Switch to activate backlighting
- 10 Power supply
- 11 Can be extended to 7 devices

Wiring RIA15

6.5 Inserting the cable, field housing

■ 19 Inserting the cable, field housing

Inserting the cable, field housing, connection without transmitter power supply (example)

- 1. Release the housing screws
- 2. Open the housing
- 3. Open the cable gland (M16) and insert the cable
- 4. Connect the cable including the functional grounding and close the cable gland
- If using the communication resistance module in the RIA15, the cable of the FMX21 must be inserted into the right gland when connecting the FMX21 so that the integrated pressure compensation tube is not pinched.

6.6 Shielding and grounding

Optimum electromagnetic compatibility (EMC) can only be guaranteed if the system components and, in particular, the lines are shielded and the shield forms as complete a cover as possible. A shield coverage of 90% is ideal.

- To ensure an optimum EMC protective effect when communicating with HART®, connect the shield as often as possible to the reference ground.
- For reasons of explosion protection, you should refrain from grounding however.

To comply with both requirements, three different types of shielding are possible when communicating with $HART^{\circ}$:

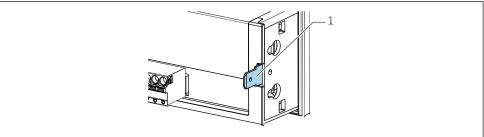
- Shielding at both ends
- Shielding at one end on the feed side with capacitance termination at the field device
- Shielding at one end on the feed side

Experience shows that the best results with regard to EMC are achieved in most cases in installations with one-sided shielding on the feed side (without capacitance termination at the field device). Appropriate measures with regard to input wiring must be taken to allow unrestricted operation when EMC interference is present. These measures have been taken into account for this device. Operation in the event of disturbance variables as per

RIA15 Wiring

> NAMUR NE21 is thus guaranteed. Where applicable, national installation regulations and quidelines must be observed during the installation! Where there are large differences in potential between the individual grounding points, only one point of the shielding is connected directly with the reference ground. In systems without potential equalization, therefore, cable shielding of fieldbus systems should only be grounded on one side, for example at the supply unit or at safety barriers.

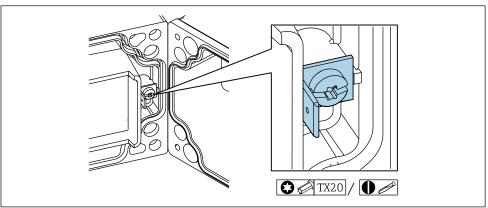
NOTICE


If the shielding of the cable is grounded at more than one point in systems without potential matching, power supply frequency equalizing currents can occur that damage the signal cable or have a serious effect on signal transmission.

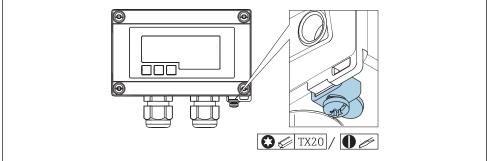
▶ In such cases the shielding of the signal cable is to be grounded on one side only, i.e. it must not be connected to the ground terminal of the housing. The shield that is not connected should be insulated!

6.7 Connecting to functional grounding

6.7.1 Panel-mounted device


For EMC reasons, the functional grounding should always be connected. When the device is used in the hazardous area (with optional Ex approval) the connection is obligatory.

Functional grounding terminal on panel-mounted device


6.7.2 Field device

For EMC reasons, the functional grounding should always be connected. When used in the hazardous area (with optional Ex approval), the connection is obliqatory and the field housing must be grounded via a grounding screw fitted on the outside of the housing.

Functional grounding terminal in field housing

Wiring RIA15

Ground terminal on field housing

A0018908

6.8 Degree of protection

6.8.1 Field housing

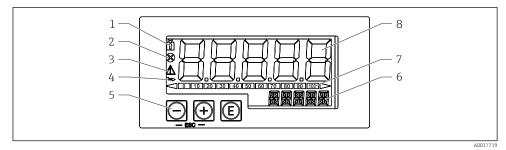
■ 22

The devices meet all the requirements of IP67. It is absolutely essential to comply with the following points to ensure this protection is guaranteed after mounting or servicing the device:

- The housing seal must be clean and undamaged when inserted into the groove. The seal must be cleaned, dried or replaced if necessary.
- The cables used for connection must be of the specified outside diameter (e.g. M16 x 1.5, cable diameter 5 to 10 mm (0.2 to 0.39 in)).
- Mount the measuring device in such a way that the cable entries point downwards.
- Replace unused cable entries with dummy plugs.
- The housing cover and the cable entries must be firmly tightened.

6.8.2 Panel housing

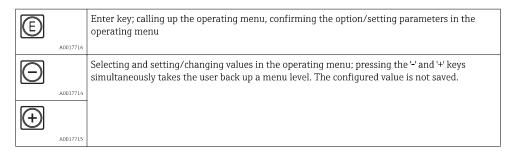
The front of the device meets the requirements of IP65. It is absolutely essential to comply with the following points to ensure this protection is guaranteed after mounting or servicing the device:


- The seal between the front of the housing and the panel must be clean and undamaged. The seal must be cleaned, dried or replaced if necessary.
- The threaded rods of the panel mounting clips must be firmly tightened.

6.9 Post-connection check

Device condition and specifications	Notes
Are cables or the device damaged?	Visual inspection
Electrical connection	Notes
Does the supply current match the specifications on the nameplate?	-
Are the cables, incl. functional grounding, connected correctly and strain-relieved?	-
Field housing: Are the cable glands securely closed?	-

RIA15 Operation


7 Operation

■ 23 Display and operating elements of the process indicator

- 1 Symbol: operating menu disabled
- 2 Symbol: error
- 3 Symbol: warning
- 4 Symbol: HART® communication active
- 6 14-segment display for unit/TAG
- 7 Bar graph with indicators for under range and over range
- 8 5-digit 7-segment display for measured value, digit height 17 mm (0.67 in)

The device is operated using three operating keys on the front of the housing. The device setup can be disabled with a 4-digit user code. If the setup is disabled, a padlock symbol appears on the display when an operating parameter is selected.

7.1 Operating functions

The operating functions of the process indicator are divided into the following menus. The individual parameters and settings are described in the "Commissioning" section.

If the operating menu is disabled by means of a user code, the individual menus and parameters can be displayed but not changed. To change a parameter, the user code must be entered. As the display unit can only display digits in the 7-segment display and not alphanumeric characters, the procedure for number parameters is different to that for text parameters.

If the operating position contains only numbers as parameters, the operating position is displayed in the 14-segment display and the configured parameter is displayed in the 7-segment display. To edit, press the 'E'-button followed by the user code.

If the operating position contains text parameters, only the operating position is initially displayed in the 14-segment display. If the \pm button is pressed again, the configured parameter is displayed in the 14-segment display. To edit, press the '+' button followed by the user code.

Operation RIA15

Setup (SETUP)	Basic device settings $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Diagnostics (DIAG)	Device information, display of error messages $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Expert (EXPRT)	Expert settings for the device setup $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

8 Commissioning

8.1 Post-installation check and switching on the device

Perform the final checks before commissioning the device:

- Checklist for "post-connection check" \rightarrow 🖺 38.

The device starts after being connected to the 4 to $20~\text{mA/HART}^{\$}$ circuit. The firmware version appears on the display during the start-up phase.

When the device is being commissioned for the first time, program the setup in accordance with the descriptions in the Operating Instructions.

If you are commissioning a device that is already configured or preset, the device immediately starts measuring the current or making a HART® request as defined in the settings. The values of the currently activated process variables appear in the display.

Remove the protective film from the display as this would otherwise affect the readability of the display.

8.2 Operating matrix

In the case of the RIA15 with the "Level", "Analysis", "FMG50" or "NMS8x" options, which are ordered directly as accessories for the measuring device, default settings may vary.

Setup menu (SETUP)	Setup menu (SETUP)			
Parameters	Values (default in bold)	visible at	Description	
LEVEL		Level option MODE = HART Measuring device connected	This menu contains the parameters for configuring the FMR20 and FMX21 measuring devices. The individual parameters are described in the "Operating matrix in conjunction with the Micropilot FMR20" $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
FMG50		Option FMG50 MODE = HART Measuring device connected	This menu contains the parameters for configuring the Gammapilot FMG50. The individual parameters are described in the "Operating matrix in conjunction with the FMG50" section $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
OPRAT		Option NMS8x MODE = HART Measuring device connected	This menu contains the parameters for configuring the Proservo NMS8x. The individual parameters are described in the "Operating matrix in conjunction with the NMX8x" section $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
СТ		Analysis option MODE = HART CM82 connected	This menu contains the parameters for configuring the CM82 analytical measuring device. The individual parameters are described in the "Operating matrix in conjunction with the CM82" section → 54.	
MODE	4-20 HART		Select the operating mode for the indicator. 4-20: The 4 to 20 mA signal of the circuit is displayed. HART: Up to four HART® variables (PV, SV, TV, QV) of a sensor/actuator in the loop can be displayed.	
DECIM	O DEC 1 DEC 2 DEC 3 DEC 4 DEC	MODE = 4-20	Number of decimal places for the 4 to 20 mA display mode.	
SC4	Numerical value -19 999 to 99 999 Default: 0.0	MODE = 4-20	5-digit value (number of decimal places as configured under DECIM) for scaling the measured value at 4 mA Example: $SC_4 = 0.0 \Rightarrow 0.0$ displayed at 4 mAmeasuring current The unit selected under UNIT is used to display the value.	

Setup menu (SETUI			
Parameters	Values (default in bold)	visible at	Description
SC_20	Numerical value -19999 to 99999 Default: 100.0	MODE = 4-20	5-digit value (number of decimal places as configured under DECIM) for scaling the measured value at 20 mA Example: $SC_20 = 100.0 \Rightarrow 100.0$ displayed at 20 mAmeasuring current The unit selected under UNIT is used to display the value.
UNIT	% °C °F K USER	MODE = 4-20	Use this function to select the unit for displaying the value. If "USER" is selected, a user-defined unit can be entered in the TEXT parameter.
TEXT	Customized text, 5-digit	MODE = 4-20	User-defined unit, only visible if the "USER" option has been selected under UNIT.
SCAN	NO YES	MODE = HART	Select "YES" to start scanning. All addresses are then automatically scanned once in a HART® application until a sensor/actor is found. Scanning runs from 0 to 63. Only addresses up to 15 are permitted for HART 5. Once the address of the sensor/actor whose values are to be displayed is found, the address must be confirmed by pressing the 'E' key. This address is adopted and is used even after a device restart. By pressing the '+' or '-' key, it is possible to search for other addresses. Pressing '+'- and '-' simultaneously will cancel scanning. If "NO" is selected, scanning is not active. The address of the sensor/actor, whose values are to be displayed on the process indicator, must be configured manually using the operating keys.
ADDR	Value 0 to 63 Default: 0	MODE = HART	Use this function to enter manually the address of the HART® sensor/actor whose values are to be displayed.
			If the address of the HART® slave is changed, it must also be changed on the process indicator. To do this, either enter the address manually or search using SCAN mode.
MTYPE	PRIM SEC	MODE = HART	Use this function to select the HART® master type: PRIM = Primary master SEC = Secondary master
HART1-HART4		MODE = HART	Use this function to select which HART® value of a sensor/actor (PV, SV, TV, QV) should be activated and configured: HART1 = PV HART2 = SV HART3 = TV HART4 = QV Press the E key to open the configuration submenu.
DISP1-DISP4	OFF MAN AUTO Default: DISP1: AUTO DISP2: MAN DISP3: MAN DISP4: MAN	MODE = HART	Use this function to select how or whether the value should be displayed. OFF: Value is not displayed MAN: You can manually scroll through activated HART® values by pressing '+' or '-' Otherwise the values are not displayed. If all four HART® values (HART1 to HART4) are set to "MAN", HART1 (PV) is displayed if you do not scroll manually through the values. AUTO: Activated HART® values are displayed alternately (switching time can be configured in the EXPRT menu under "TOGTM"). If one value is set to AUTO, this value is displayed continuously on the device.
DEC1 - DEC4	0 DEC 1 DEC 2 DEC 3 DEC 4 DEC	MODE = HART	Number of decimal places for the values HART1 - HART4.
BGLO1-BGLO4	Numerical value -19999 to 99999 Default: 0.0	MODE = HART	5-digit value (number of decimal places as configured under DEC1-DEC4) for scaling the lower range of the bar graph for HART1 - HART4. The bar graph is disabled if BGLOx and BGHIx are set to "0.0".
BGHI1-BGHI4	Numerical value -19999 to 99999 Default: 0.0	MODE = HART	5-digit value (number of decimal places as configured under DEC1-DEC4) for scaling the upper range of the bar graph for HART1 - HART4. The bar graph is disabled if BGLOx and BGHIx are set to "0.0".

S	Setup menu (SETUP)			
F	arameters	Values (default in bold)	visible at	Description
	UNIT1-UNIT4	HART % °C °F K USER	MODE = HART	Use this function to select the unit for displaying the HART® value. If "HART" is selected, the unit configured on the sensor/actor is automatically adopted for the relevant HART® value. Only units with a maximum of 5 characters can be shown. Longer units are displayed as unit code "UCxxx". The table in the HART® communication section at the end of these Operating Instructions provides an overview of the units that can be displayed. If "USER" is selected, a user-defined unit can be entered in the TEXT1-TEXT4 parameter.
	TEXT1-TEXT4	Customized text, 5-digit	MODE = HART	User-defined unit. Only visible if the "USER" option has been selected under UNIT

Diagnostics menu (DIAG)	Diagnostics menu (DIAG)			
Parameters	Values	Description		
AERR	Read only	The current diagnostic message appears on the display. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.		
LERR	Read only	The last diagnostic message with the highest priority appears on the display.		
FWVER	Read only	The firmware version appears on the display.		
TERR 1)	Read only	Displays the diagnostic code/error code pending at Endress+Hauser HART® transmitters/sensors. Please refer to the Operating Instructions of the relevant Endress+Hauser transmitter/sensor for additional information about the meaning of the diagnostic number and the remedial measures.		

1) For Endress+Hauser transmitters/sensors with HART® communication, the diagnostic code/error code currently pending can be queried via Endress+Hauser command #231. This command is only supported by Endress+Hauser transmitters/sensors. Therefore, the TERR parameter is not visible if third-party devices are connected to the RIA15.

Expert menu (EXPRT); a code must be entered

In addition to all the parameters in the Setup menu, the Expert menu also contains the parameters described in this table. If you call up the Expert menu, you will be asked to enter the user code (UCODE, default: 0000).

Expert menu, you					
Parameters	Values (default in bold)	visible at	Description		
LEVEL		Level option MODE = HART Measuring device connected	This menu contains the parameters for configuring the FMR20 and FMX21 measuring devices. The individual parameters are described in the "Operating matrix in conjunction with the Micropilot FMR20" $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
FMG50		Option FMG50 MODE = HART Measuring device connected	This menu contains the parameters for configuring the Gammapilot FMG50. The individual parameters are described in the "Operating matrix in conjunction with the FMG50" section $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
OPRAT		Option NMS8x MODE = HART Measuring device connected	This menu contains the parameters for configuring the Proservo NMS8x. The individual parameters are described in the "Operating matrix in conjunction with the NMX8x" section $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
СТ		Analysis option MODE = HART CM82 connected	This menu contains the parameters for configuring the CM82 analytical measuring device. The CT menu and all of the associated submenus are visible only if the RIA15 was ordered with the "analysis" option and an appropriate device is connected. Using this menu, the basic settings for the analytical measuring device can be made via the RIA15. Description of the individual parameters $\rightarrow \implies 54$		
SYSTM					

Expert menu (EXPRT); a code must be entered

In addition to all the parameters in the Setup menu, the Expert menu also contains the parameters described in this table. If you call up the Expert menu, you will be asked to enter the user code (UCODE, default: 0000).

Para	meters	Values (default in bold)	visible at	Description	
	UCODE	Numerical value 0000 to 9999 Default: 0000		4-digit user code With the user code it is possible to protect the device setup from unauthorized modifications. If the setup is disabled, a padlock symbol appears on the display when an operating parameter is selected. The user code is not active with the default setting "0000". This means that setup parameters can be changed without entering the code. The code must always be entered for the Expert menu, even for the default setting.	
	FRSET	NO YES		Resets the device setup. The values are reset to the preset values for preconfigured devices, and to the default values for all other devices. Select "YES" and press "E" by way of confirmation to reset the device.	
	TOGTM	5 10 15 20	MODE = HART	Select the switching time in seconds between the HART® values if "AUTO" was selected in the DISP1-DISP4 menu.	
INPU	T			The following parameters are available in addition to the parameters from the Setup menu.	
	CURV	LINAR SQRT		Use this to select the calculation function for the process value (for MODE = 4-20) LINAR (scaling with SC_4 and SC_20): Process value = (mA value - 4)/16 * (SC_20 - SC_4) + SC_4 + OFFST SQRT (square root extraction and scaling): Process value = Square root((mA value - 4)/16) * (SC_20 - SC_4) + SC_4 + OFFST Negative values when calculating the square root are set to 0. Use this to select the calculation function for the HART1 value (PV) (for MODE = HART) LINAR: HART1 value (PV) = "exported PV value" * FACT1 + OFFS1 SQRT (square root extraction and scaling with BGL01 and BGHI1): HART1 value (PV) = (square root("exported percentage PV value" / 100) * (BGHI1 - BGL01) + BGL01) * FACT1 + OFFS1 Negative values when calculating the square root are set to 0. Example for SQRT: exported percentage PV value = 50 BGL01 = 100.0 BGHI1 = 200.0 FACT1 = 1 OFFS1 = 0.0 HART1 value (PV) = (square root(50/100) * (200 - 100) + 100) * 1 + 0 = 170.7	
	NAMUR	NO YES	MODE = 4-20	Use this function to define the error limits in accordance with standard NAMUR NE 43 \rightarrow \cong 59	
	RNGLO	Value	NAMUR = NO	Lower range limit. An error message is displayed if the measured current falls below this limit.	
	RNGHI	Value	NAMUR = NO	Upper range limit. An error message is displayed if the measured current exceeds this limit.	
	OFFST	Numerical value -19999 to 99999	MODE = 4-20	Use this function to enter an offset value to display the measured value.	

Expert menu (EXPRT); a code must be entered

In addition to all the parameters in the Setup menu, the Expert menu also contains the parameters described in this table. If you call up the Expert menu, you will be asked to enter the user code (UCODE, default: 0000).

Parameters		Values (default in bold) Description		Description
	FACT1-FACT4	1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1 1E1 1E2 1E3 1E4 1E5 1E6	MODE = HART	As the display is limited to 5 characters, the measured value must be multiplied by a factor if necessary. For example: conductivity 0.00003 S multiplied by factor $1E6 \Rightarrow 30.000 \mu S$. If a factor is used, it is recommended to set the unit under UNIT1-4 to "UNIT" and to enter user-defined text because the unit automatically delivered via HART® no longer matches the displayed value.
	OFFS1-OFFS4	Numerical value -19 999 to 99 999	MODE = HART	Use this function to enter an offset value to display the HART1-HART4 measured value. If a factor is used, the offset is added to the multiplied value (displayed value = measured value*factor + offset)
	EXP1-EXP4	YES NO	MODE = HART	Measured value display for measured values greater than 99999. YES: If the display overruns, the measured value is displayed in exponential notation. NO: Values with more than 5 digits are not displayed if the display overruns. Value is displayed with leading zeros. Example: Measured value: 130002.4 YES => 1.30E5 NO => 0002.4
IAG				
CN	ГНІ	Read only	MODE = HART	Counter for the number of values transmitted via HART® , 5 top positions. The counter goes back to 0 after a device restart or scan.
CN	ГLО	Read only	MODE = HART	Counter for the number of values transmitted via HART $^{\odot}$, 5 bottom positions. The counter goes back to 0 after a device restart or scan.
RET	TRY	Read only	MODE = HART	Counter for the number of retries to establish HART® communication. The counter goes back to 0 after a device restart or scan.
FAI	L	Read only	MODE = HART	Counter for the number of failed attempts to establish HART® communication. The counter goes back to 0 after a device restart or scan.
HLE	EVL		1	,
	Tx mV	Read only	MODE = HART	Value of the peak-to-peak level of the transmission signal in mV
	Rx mV	Read only	MODE = HART	Value of the peak-to-peak level of the received signal in mV
	NOISE	Read only	MODE = HART	Displays the level of the interference signal LO = low interference signal MED = medium interference signal HI = high interference signal
	Rc Ω	Read only	MODE = HART	Value of the total resistance in the HART® loop in Ohm

8.3 Operating matrix in conjunction with the Micropilot FMR20

In the HART mode, the RIA15 with the "level" option can be used for the basic commissioning of the Micropilot FMR20 radar level sensor.

For additional information on the FMR20, see the associated Operating Instructions $\rightarrow \mathbb{B}$ BA01578F.

Basic commissioning of the FMR20

The RIA15 must be in the HART mode (MODE = HART) to make the basic settings. The LEVEL menu is not visible in the analog mode (MODE = 4-20).

- 1. Press the 📵 key.
 - **└** The **Setup** menu opens.
- 2. Press the 📵 key.
 - ► The **LEVEL** submenu opens.
- 3. Set the desired parameters. For parameter descriptions, see the following table.

Setup -> Level (LEVEL) menu

The LEVEL menu is only visible if the RIA15 has been ordered with the "level" option and the indicator is operated in the HART mode (MODE = HART). Using this menu, the basic settings for the Micropilot FMR20 radar level sensor can be made via the RIA15.

Parameters	Values	Description
.EVEL		This menu contains the parameters for configuring the FMR20 level transmitter. Using this menu, the basic settings for the Micropilot FMR20 radar level sensor can be made via the RIA15.
UNIT	m ft	Select the displayed unit
ЕМРТҮ	Numerical value - 199.99 to 999.99	Empty calibration using keys -,+,E. Enter distance from process connection to min. level Valid range of adjustment: 0 to 100 m
FULL	Numerical value - 199.99 to 999.99	Full calibration using keys -,+,E. Enter span from max. level to min. level
DIST	Measured value	Measured value (measured distance)
MAP		
DI OK		To be selected if the distance displayed matches the actual distance. The device then records a mapping.
MAN		To be selected if the range of mapping is to be defined manually in the 'Mapping end point' parameter. A comparison between the distance displayed and the actual distance is not necessary in this case. Mapping becomes active after approx. 20 s.
DI UN		To be selected if the actual distance is unknown. No mapping is recorded.
FACT		To be selected if the present mapping curve (if one exists) is to be deleted. The device returns to the "Confirm distance" parameter and a new mapping can be recorded.

8.4 Operating matrix in conjunction with the Waterpilot FMX21

In the HART mode, the RIA15 with the "level" option can be used for the basic commissioning of the Waterpilot FMX21 level sensor.

For further information on the FMX21, see the associated Operating Instructions \rightarrow BA00380P and BA01605P.

Basic commissioning of the FMX21

The RIA15 must be in the HART mode (MODE = HART) to make the basic settings. The LEVEL menu is not visible in the analog mode (MODE = 4-20).

- 1. Press the 📵 key.
 - ► The **Setup** menu opens.
- 2. Press the 📵 key.
 - ► The **LEVEL** submenu opens.
- 3. Set the desired parameters. For parameter descriptions, see the following table.

Setup -> Level (LEVEL) menu

The LEVEL menu is only visible if the RIA15 has been ordered with the "level" option and the indicator is operated in the HART mode (MODE = HART). Using this menu, the basic settings for the Waterpilot FMX21 level sensor can be made via the RIA15.

rameters	Values	Description
VEL		This menu contains the parameters for configuring the pressure measuring device for hydrostatic level measurement, FMX21. Using this menu, the basic settings for the FMX21 can be made via the RIA15. Once the LEVEL menu item is opened, the following parameters are automatically adjusted for easier operation: Operating mode: Level Calibration mode: Dry Level selection: In pressure Lin mode: Linear
		It is possible to reset these parameters to the factory default settings by performing a reset.
PUNIT	mbar bar kPa PSI	Use this function to select the unit for pressure
LUNIT	% m inch feet	Use this function to select the unit for level
TUNIT	°C °F K	Use this function to select the unit for temperature
ZERO	NO YES	For performing a position adjustment (gauge pressure sensor). The value 0.0 is assigned to the pressure value present. The current value is also corrected.
P_LRV	-1999.9 9999.9	Pressure empty calibration using keys -,+,E More in-depth description / valid value range: any value in the range indicated ¹⁾ Number of decimal places depends on the configured pressure unit. Valid ranges of adjustment: 0 to 100 mbar or 0 to 20 bar
P_URV	-1999.9 9999.9	Pressure full calibration using keys -,+,E More in-depth description / valid value range: any value in the range indicated ¹⁾ Number of decimal places depends on the configured pressure unit. Valid ranges of adjustment: 0 to 100 mbar or 0 to 20 bar
ЕМРТҮ	-1999.9 9999.9	Level empty calibration using keys -,+, E More in-depth description / valid value range: any value in the range indicated $^{1)}$ Number of decimal places depends on the configured level unit. For valid ranges of adjustment, see associated Operating Instructions of the FMX21 \rightarrow BA00380P and BA01605P.
FULL	-1999.9 9999.9	Level full calibration using keys -,+, E More in-depth description / valid value range: any value in the range indicated $^{1)}$ Number of decimal places depends on the configured level unit. For valid ranges of adjustment, see associated Operating Instructions of the FMX21 \rightarrow BA00380P and BA01605P.
LEVEL	Measured value	Displays the measured level Number of decimal places depends on the configured level unit.
RESET	NO YES	Reset the FMX21 to factory defaults

¹⁾ The values entered for "Empty calib./Full calib.", "Empty pressure/Full pressure" and "Set LRV/Set URV" must be at least 1% apart. The value will be rejected, and a message displayed, if the values are too close together. Further limit values are not checked, i.e. the values entered must be appropriate for the sensor module and the measuring task for the device to be able to measure correctly.

8.5 Operating matrix in conjunction with the Gammapilot FMG50

In the HART mode, the RIA15 with the "FMG50" option can be used for the basic configuration of the level mode, point level mode or density mode of the Gammapilot FMG50.

For additional information on the FMG50, see the associated Operating Instructions $\rightarrow \square$ BA01966F

Basic setup of the Gammapilot FMG50

The RIA15 must be in the HART mode (MODE = HART) to make the basic settings. The **FMG50** menu is not visible in the analog mode (MODE = 4-20).

- 1. Press the 📵 key.
 - ► The **SETUP** menu opens.
- 2. Press the 📵 key.
 - ► The **FMG50** submenu opens.
- 3. Operate the device by setting the measurement command. The following table contains a description of the parameters and an explanation of the various abbreviations used

Menu SETUP -> FMG50 -> OPER (Operating Mode)

The FMG50 menu is only visible if the RIA15 has been ordered with the "FMG50" option and the indicator is operated in the HART mode (MODE = HART). The basic configuration of the level mode, point level mode or density mode of the Gammapilot FMG50 can be performed via the RIA15 using this menu.

Parameters	Values	Description			
FMG50		This menu contains the parameters for the basic configuration of the Gammapilot FMG50 for level measurement, point level detection or density measurement. The basic settings for the Gammapilot FMG50 can be made via the RIA15 using this menu.			
OPER	PLEV LEVEL DENS	Opens the "Operating Mode" menu where the user can select the measuring mode for the device. Users can choose from the following measuring modes: Point Level Continuous Level Density For a detailed description of the individual operating modes, see the Operating Instructions for the FMG50.			

Menu SETUP -> FMG50 -> OPER -> PLEV (Point Level)

The basic configuration of the Gammapilot FMG50 for point level detection can be performed via the RIA15 using this menu.

If "PLEV" (Point Level) has been selected as the operating mode, the linearization type is automatically set to "Linear".

Parameters Values		Description		
LRV		Level value for 4 mA		
	Value	0.1 to 9999.9		
URV		Level value for 20 mA		
	Value	0.1 to 9999.9		
BEAMT		Beam Type: Choice of continuous or modulated radiation. Modulated radiation is used to suppress gammagraphy. The FHG65 modulator must be used in order to use modulated radiation.		
	MOD	Modulated		
	STD	Standard		
ISOTY		Use this function to select the isotope used for the measurement. The type of isotope is critical for correct decay compensation.		

Menu SETUP -> FMG50 -> OPER -> PLEV (Point Level)

The basic configuration of the Gammapilot FMG50 for point level detection can be performed via the RIA15 using this menu.

If "PLEV" (Point Level) has been selected as the operating mode, the linearization type is automatically set to "Linear".

nrameters Values		Description			
	CS137	Caesium 137			
	CO60	Cobalt 60			
CTIME		Integration time for the calibration.			
	Value	1 to 8000 s			
BCKCL		Background calibration is necessary for the measurement of natural background radiation.			
	START	Starts the measurement of the pulse rate, which is caused by natural background radiation.			
	STOP	Stop the calibration			
	WAIT	Calibration in progress			
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.			
PULSF		Full calibration: calibration of the pulse rate for "Full"			
	START	START triggers a full calibration. The device determines the pulse rate in the "Full" state.			
	STOP	Stop the calibration			
	WAIT	Calibration in progress			
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.			
FULL		Use this function to enter a level value for full calibration (for point level detection = 100 %).			
	Value	100.0 to 60.0 %			
PULSE		Empty calibration: calibration of the pulse rate for "Empty"			
	START	START triggers an empty calibration. The device determines the pulse rate in the "Empty" state.			
	STOP	Stop the calibration			
	WAIT	Calibration in progress			
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.			
EMPTY		Use this function to enter a level value for empty calibration (for point level detection = 0 %).			
	Value	0.0 to 40.0 %			
PLSB		Displays the background pulse rate			
PLSF		Displays the full pulse rate			
PLSE		Displays the empty pulse rate			

Menu SETUP -> FMG50 -> OPER -> LEVEL (Continuous Level)

 $The \ basic \ configuration \ of the \ Gammapilot \ FMG50 \ for \ continuous \ level \ measurement \ can \ be \ performed \ via \ the \ RIA15 \ using \ this \ menu.$

If "Continuous Level" has been selected as the operating mode, the linearization type is automatically set to "Standard".

Pa	rameters	Values	Description		
	LUNIT		Unit for continuous level measurement (percent only)		
		%	Percent		
	LRV Level value for 4 mA		Level value for 4 mA		
		Value	0.1 to 9999.9		
	URV Level value for 20 mA		Level value for 20 mA		
		Value	0.1 to 9999.9		
	BEAMT		Beam Type: Choice of continuous or modulated radiation. Modulated radiation is used to suppress gammagraphy. The FHG65 modulator must be used in order to use modulated radiation.		

Menu SETUP -> FMG50 -> OPER -> LEVEL (Continuous Level)

The basic configuration of the Gammapilot FMG50 for continuous level measurement can be performed via the RIA15 using this menu.

If "Continuous Level" has been selected as the operating mode, the linearization type is automatically set to "Standard".

arameters Values		Description		
	MOD	Modulated		
	STD	Standard		
ISOTY		Use this function to select the isotope used for the measurement. The type of isotope is critical for correct decay compensation.		
	CS137	Caesium 137		
	CO60	Cobalt 60		
CTIME		Integration time for the calibration.		
	Value	1 to 8 000 s		
BCKCL		Background calibration is necessary for the measurement of natural background radiation.		
	START	Starts the measurement of the pulse rate, which is caused by natural background radiation.		
	STOP	Stop the calibration		
	WAIT	Calibration in progress		
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.		
PULSF		Full calibration: calibration of the pulse rate for 100 %		
	START	START triggers a full calibration. The device determines the pulse rate in the "Full" state.		
	STOP	Stop the calibration		
	WAIT	Calibration in progress		
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.		
PULSE		Empty calibration: calibration of the pulse rate for 0 %		
	START	START triggers an empty calibration. The device determines the pulse rate in the "Empty" state.		
	STOP	Stop the calibration		
	WAIT	Calibration in progress		
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.		
PLSB		Displays the background pulse rate		
PLSF		Displays the full pulse rate		
PLSE		Displays the empty pulse rate		

Menu SETUP -> FMG50 -> OPER -> DENS (Density)

 $The \ basic \ configuration \ of the \ Gammapilot \ FMG50 \ for \ density \ measurement \ can \ be \ performed \ via \ the \ RIA15 \ using \ this \ menu.$

If "Density" has been selected as the operating mode, the linearization type is automatically set to "Multipoint Calibration".

Pa	Parameters Values		Description		
DUNIT Engineering unit for displaying and transmitting the density va			Engineering unit for displaying and transmitting the density value.		
		G/CM3 KG/M3 G/L LB/GA LB/IN	g/cm ³ kg/m ³ g/l lb/gal lb/in ³		
	LUNIT		Unit of length for entering distances, e.g. length of the beam path		
		MM INCH	mm inch		
LRV Density value for 4 mA		Density value for 4 mA			

Menu SETUP -> FMG50 -> OPER -> DENS (Density)

The basic configuration of the Gammapilot FMG50 for density measurement can be performed via the RIA15 using this menu.

If "Density" has been selected as the operating mode, the linearization type is automatically set to "Multipoint Calibration".

ameters	Values	Description	
	Value	0.0 to 9999.9 (the number of decimal places depends on the setting in the DUNIT parameter)	
URV		Density value for 20 mA	
	Value	0.0 to 9999.9 (the number of decimal places depends on the setting in the DUNIT parameter)	
BEAMP		Beam Path: The length of the beam path is the distance between the source container and the detector. this distance is not known, an approximate value or the pipe diameter can be used.	
	Value	0 to 99 999 mm (0.1 to 9 999.9 in)	
BEAMT		Beam Type: Choice of continuous or modulated radiation. Modulated radiation is used to suppress gammagraphy. The FHG65 modulator must be used in order to use modulated radiation.	
	MOD	Modulated	
	STD	Standard	
ISOTY		Use this function to select the isotope used for the measurement. The type of isotope is critical for correct decay compensation.	
	CS137	Caesium 137	
	CO60	Cobalt 60	
CTIME		Integration time for the calibration.	
	Value	1 to 8000 s	
BCKCL		Background calibration is necessary for the measurement of natural background radiation.	
	START	Starts the measurement of the pulse rate, which is caused by natural background radiation.	
	STOP	Stop the calibration	
	WAIT	Calibration in progress	
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.	
PULS1		Pulse rate of 1st density calibration point The pulse rate that corresponds to the density of the material in the beam path is determined during the calibration. This value and the absorption coefficient are used to calculate the course of the calibration of for density measurement.	
	START	START triggers the calibration of the 1st density point. The device determines the pulse rate in the "Densit point 1" state.	
	STOP	Stop the calibration	
	WAIT	Calibration in progress	
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.	
DENS1		Use this function to enter the corresponding density value for the calibration of density point 1.	
	Value	0.1 to 999.9	
PULS2		Pulse rate of 2nd density calibration point The pulse rate that corresponds to the density of the material in the beam path is determined during the calibration. This value and the absorption coefficient are used to calculate the course of the calibration cufor density measurement.	
	START	START triggers the calibration of the 2nd density point. The device determines the pulse rate in the "Der point 2" state.	
	STOP	Stop the calibration	
	WAIT	Calibration in progress	
	DONE	Calibration is finished. The calibration point is activated by pressing the "E" key.	
DENS2		Use this function to enter the corresponding density value for the calibration of density point 2.	
	Value	0.1 to 9999.9	

Menu SETUP -> FMG50 -> OPER -> DENS (Density)

The basic configuration of the Gammapilot FMG50 for density measurement can be performed via the RIA15 using this menu.

If "Density" has been selected as the operating mode, the linearization type is automatically set to "Multipoint Calibration".

Parameters		Values	Description	
	PLSB		Displays the background pulse rate	
	PLSD1		Displays the pulse rate of the 1st density calibration point	
	PLSD2		Displays the pulse rate of the 2nd density calibration point	

8.6 Operating matrix in conjunction with the Proservo NMS8x

In the HART mode, the RIA15 with the "NMS8x" option can be used for the basic operation of the Proservo NMS8x tank gauging device.

For additional information on the NMS80, see the associated Operating Instructions → □ BA01456G.

For additional information on the NMS81, see the associated Operating Instructions \rightarrow \blacksquare BA01459G.

For additional information on the NMS83, see the associated Operating Instructions \rightarrow \blacksquare BA01462G.

Basic commissioning of the NMS8x

The RIA15 must be in the HART mode (MODE = HART) to make the basic settings. The **OPRAT** menu is not visible in the analog mode (MODE = 4-20).

- 1. Press the 📵 key.
 - The **OPRAT** menu opens.
- 2. Press the 📵 key.
 - ► The **CMD** submenu opens.
- 3. Set the desired parameters. For parameter descriptions, see the following table.

Menu OPRAT (Operating)

The OPRAT menu is only visible if the RIA15 has been ordered with the "NMS8x" option and the indicator is operated in the HART mode (MODE = HART). Using this menu, the basic settings for the Proservo NMS8x tank gauging device can be made via the RIA15.

Parameters	Values	Description
OPRAT		This menu contains the parameters for the operation of the Proservo NMS8x and for reading out the current measurement status.
CMD		Command used to select the device measuring mode. The status of the execution of the command is indicated in the STA status parameter.
		For more information on the NMS8x, see the Operating Instructions for the device.
	STOP	Stop
	LEVEL	Level
	UP	Up
	BTM L	Bottom level
	UP IF	Upper I/F level
	LO IF	Lower I/F level
	U DEN	Upper density
	M DEN	Middle density
	L DEN	Lower density

Menu OPRAT (Operating)

The OPRAT menu is only visible if the RIA15 has been ordered with the "NMS8x" option and the indicator is operated in the HART mode (MODE = HART). Using this menu, the basic settings for the Proservo NMS8x tank gauging device can be made via the RIA15.

rameters	Values	Description			
	REPET	Repeatability			
	W DIP	Water dip			
	R OVR	Release overtension			
T Pro IFPro M Pro		Tank profile			
		Interface profile			
		Manual profile			
	STBY	Level standby			
	SELF	Self check			
BAL		Indicates the validity of the measurement. If it is balanced, the corresponding value (Liquid Level, Upper Interface, Lower Interface, Tank Bottom) is updated.			
	No	Level data of the device are not valid.			
	Yes	Level data of the device are valid.			
STA		Indicates the current measurement status of the device.			
	REF	isplacer at reference position			
	UP	Displacer hoisting up			
	STOP	Displacer stop			
	BAL	Level measurement balanced			
	UIF B	Upper interface level balanced			
	UDErr	Upper density error			
	BTm B	Bottom measurement balanced			
	UDDon	Upper density done			
	MDDon	Middle density done			
	LDDon	Lower density done			
	REL	Release overtension			
	CALIB	Calibration activated			
	SEEK	Seek level			
	FLW	Follow level			
	S UIF	Seek upper interface level			
	F UIF	Follow upper interface level			
	MDErr	Middle density error			
	F LIF	Follow lower interface level			
	S BTm	Seek bottom level			
	H STP	Stopped at high stop			
	L STP	Stopped at low stop			
	REPET	Repeatability testing			
	S WL	Seek water level			
	WLErr	Water level error			
	T BAL	Temporary balanced			
	LDErr	Lower density error			
	SL UP	Slow hoist up			

Menu OPRAT (Operating)

The OPRAT menu is only visible if the RIA15 has been ordered with the "NMS8x" option and the indicator is operated in the HART mode (MODE = HART). Using this menu, the basic settings for the Proservo NMS8x tank gauging device can be made via the RIA15.

Parameters Values		Description
	MAINT	Maintenance
	LIF B	Lower Interface level balanced
	S LIF	Seek lower interface level
	RELSD	Overtension released
	Abv_L	Above liquid
	WDDon	Water dip finished
	P Don	Profile done
	B Don	Bottom done
	L Fnd	Level found
	P Err	Profile error
	WAIT	Wait for level
	S STb	Seek standby position
	MOVE	Move to target
	M DEN	Measure density
	M AIR	Measure in air
	B Err	Bottom error

8.7 Operating matrix in conjunction with the Liquiline CM82

In the HART mode, the RIA15 with the "analysis" option can be used for the basic commissioning of the Liquiline CM82.

For further information on the CM82, see the associated Operating Instructions $\rightarrow \square$ BA01845C

Basic commissioning of the CM82

The RIA15 must be in the HART mode (MODE = HART) to make the basic settings. The ANALYSIS menu is not visible in analog mode (MODE = 4-20).

- 1. Press the 📵 key.
 - **└** The **Setup** menu opens.
- 2. Press the 📵 key.
 - ► The **CT** submenu opens.
- 3. Set the desired parameters. For parameter descriptions, see the following table.

Setup -> ANALYSIS menu

The CT menu and all of the associated submenus are visible only if the RIA15 was ordered with the "analysis" option, the HART option has been configured and a CM82 has been detected by the RIA15. Using this menu, the basic settings for the CM82 can be made via the RIA15.

_		=	
Parameters		Values	Description
СТ			This menu contains the parameters for configuring the CM82 compact transmitter.
CSET			Access the "CM82 setup" submenu
	TUNIT	°C °F °K	Select the unit for temperature on the CM82.

Setup -> ANALYSIS menu

The CT menu and all of the associated submenus are visible only if the RIA15 was ordered with the "analysis" option, the HART option has been configured and a CM82 has been detected by the RIA15. Using this menu, the basic settings for the CM82 can be made via the RIA15.

arameters			Values	Description			
	OUTS			Access the "CM82 - Output Setting" submenu to change the setting on the CM82. The primary value (CMAIN) of the CM82 is assigned here and the measuring range (4-20mA) configured. Depending on the sensor type connected, only certain			
				measured values can be configured/displayed.			
		pH glass	sensors				
		CMAIN	pH mV_PH IMPGL TEMP	pH: pH measured value in pH mV_PH: pH raw value in mV IMPGL: Glass impedance in MOhm $^{1)}$ TEMP: Temperature in $^{\circ}$ C/ $^{\circ}$ F/K (unit as per setting in TUNIT)			
		pH-ISFET	sensors				
		CMAIN	pH mV_PH LEAKC TEMP	PH: pH measured value in pH mV_PH: pH raw value in mV LEAKC: ISFET leak current in "nA" 1) TEMP: Temperature in "C/"F/K (unit as per setting in TUNIT)			
		pH ORP s	ensors				
		CMAIN	mVORP %_ORP TEMP	mVORP: ORP measured value in mV %_ORP: Percentage ORP value as % TEMP: Temperature in °C/°F/K (unit as per setting in TUNIT)			
		pH/ORP of sensors	combination				
		CMAIN	pH mV_PH IMPGL IMPRE mVORP %_ORP RH TEMP	PH: pH measured value in pH mV_PH: pH raw value in mV IMPGL: Glass impedance in MOhm ¹⁾ IMPRE: Reference impedance in Ohm mVORP: ORP measured value in mV %_ORP: Percentage ORP value as % RH: rH value in rH TEMP: Temperature in °C/°F/K (unit as per setting in TUNIT)			
		Oxygen sensors					
		CMAIN	PAR_P %SAT C_LIQ C_GAS CURR RTIME TEMP	PAR_P: Partial pressure of oxygen in hPa %SAT: Percentage saturation as % C_LIQ: Liquid concentration (unit as per setting in UCLIQ) C_GAS: Gas concentration (unit as per setting in UCGAS) CURR: Raw value, measuring current of sensor in nA 1) (visible onl in the case of amperometric oxygen sensors) RTIME: Decay time, raw value in μs (visible only in the case of optical oxygen sensors) TEMP: Temperature in °C/*F/K (unit as per setting in TUNIT)			
		UCLIQ	mG_L uG_L PPM PPB	Unit of upper and lower turndown setting if the primary value (CMAIN) is set to C_LIQ mG_L: milligram/liter ¹⁾ uG_L: microgram/liter PPM: parts per million PPB: parts per billion			
		UCGAS	%_VOL PPM_V	Unit of upper and lower turndown setting if the primary value (CMAIN) is set to C_GAS %_VOL: percent by volume PPM V: parts per million			

Setup -> ANALYSIS menu

The CT menu and all of the associated submenus are visible only if the RIA15 was ordered with the "analysis" option, the HART option has been configured and a CM82 has been detected by the RIA15. Using this menu, the basic settings for the CM82 can be made via the RIA15.

Parameters		Values	Description
	CMAIN	COND RESIS RAWC TEMP	COND: specific conductivity (unit as per setting in UCOND) RESIS: resistivity (unit as per setting in URES) RAWC: uncompensated conductivity (unit as per setting in UCOND) TEMP: temperature (unit as per setting in TUNIT)
	URES	KO*CM MO*CM KO*M	Unit of upper and lower turndown setting if the primary value (CMAIN) is set to RESIS KO*CM: kOhm*cm MO*CM: MOhm*cm KO*M: kOhm*m
	UCOND	uS/cm mS/cm S/cm uS/m mS/m	Unit of upper and lower turndown setting if the primary value (CMAIN) is set to COND or RESIS uS/cm: microsiemens/cm mS/cm: millisiemens/cm S/cm: siemens/cm uS/m: microsiemens/m mS/m: millisiemens/m mS/m: siemens/m
	for all sens	ors	

Setup -> ANALYSIS menu

The CT menu and all of the associated submenus are visible only if the RIA15 was ordered with the "analysis" option, the HART option has been configured and a CM82 has been detected by the RIA15. Using this menu, the basic settings for the CM82 can be made via the RIA15.

Parameters		Values	Description
Parameters	LOW	-19,999 99,999	Configure turndown of current output. The measured value that corresponds to 4 mA is set here. The limits of adjustment vary depending on the sensor type and measured value. The position of the decimal point is permanently preset depending on the primary value (CMAIN) configured. Valid ranges of adjustment: pH sensor: PH: -2.00 to 16.00 pH mV PH: -2000 to 2000 mV
			LEAKC: -4000.0 to 4000.0 nA IMPGL: 0 to 99999 MOhm IMPRE: 0 to 99999 Ohm mVORP: -2000 to 2000 mV %_ORP: -3000.0 to 3000.0 % RH: 0.0 to 70.0 rH TEMP: -50.0 to 150.0 °C (depending on the unit configured under TEMP) -58.0 to 302.0°F 223.1 to 423.1 K
			dissolved oxygen sensor: PAR_P: 0.0 to 2500.0 hPa %SAT: 0.02 to 200.00 % saturation C_LIQ: -0.02 to 120.00 mg/l -20.00 to 999.99 ug/l -0.02 to 120.00 ppm -20.00 to 999.99 ppb (depending on the unit configured in UCLIQ) C_GAS: -0.02 to 200.00 % Vol -0.02 to 200.00 % Vol -200.00 to 999.99 ppm Vol (depending on the unit configured under UCGAS) CURR: 0.0 to 999.99 nA RTIME: 0.0 to 100.0 μs TEMP: -10.0 to 140.0 °C
			14.0 to 284 °F 263.1 to 413.1 K (depending on the unit configured under TEMP) Conductivity sensor: COND: 0.000 to 99.999 uS/cm 0.000 to 99.999 mS/cm 0.000 to 2.000 S/cm 0.000 to 99.999 uS/m
			0.000 to 99.999 mS/m 0.000 to 99.999 S/m (depending on the unit configured in UCOND) RESIS: 0.00 to 999.99 kOhm*cm 0.00 to 200.00 MOhm*cm 0.00 to 999.99 kOhm*m (depending on the unit configured in URES) RAWC: 0.000 to 99.999 uS/cm 0.000 to 99.999 mS/cm 0.000 to 2.000 S/cm 0.000 to 99.999 uS/m
			0.000 to 99.999 mS/m 0.000 to 99.999 S/m (depending on the unit configured in UCOND)

Setup -> ANALYSIS menu

The CT menu and all of the associated submenus are visible only if the RIA15 was ordered with the "analysis" option, the HART option has been configured and a CM82 has been detected by the RIA15. Using this menu, the basic settings for the CM82 can be made via the RIA15.

Parameters			Values	Description
				TEMP: -50.0 to 250.0 °C -58.0 to 482.0 °F 223.1 to 523.1 K (depending on the unit configured under TEMP)
		HIGH	-19,999 99,999	Configure turndown of current output. The measured value that corresponds to 20 mA is set here. The limits of adjustment vary depending on the sensor type and measured value. The position of the decimal point is permanently preset depending on the primary value (CMAIN) and the set units (UCLIQ, UCGAS, URES, UCOND) configured. For valid ranges of adjustment, see LOW (setting for 4 mA)
		ERRC	3.6 to 23.0	Configure the error current on the CM82 in mA
CDIAC				Access the "CM82 - Device diagnostics" submenu
	FCSM		Error category as per NAMUR and error number	Display the error message with the highest priority on the CM82
	DTAG		Device tag	Display the device tag of the CM82 (use +/- keys to scroll through text)
	DSER		Device serial number	Display the serial number of the CM82 (use +/- keys to scroll through text)
	SENOC		Sensor order code	Display the oder code of the sensor (use +/- keys to scroll through text)
	SENSN		Sensor serial number	Display the serial number of the sensor (use +/- keys to scroll through text)
CTRES				Access the "CM82 -Reset" submenu
	RBOOT		No YES	Trigger a restart of the CM82
	FDEF		No YES	Reset the CM82 to factory settings
CTSIM				Access the "CM82 -Simulation" submenu
	SIMUL		OFF ON	Switch on simulation for current output value on CM82
	VALUE	· · · · · ·	3.6 to 23.0	Configure current output value on CM82 for simulation in mA

¹⁾ If this parameter is selected, "UC170" appears in display mode for the unit. To display the unit, this must be individually configured in the "TEXT1" menu item. (SETUP => HART => HART1 => UNIT1 => TEXT1) → 🖺 59

RIA15 Troubleshooting

9 **Troubleshooting**

9.1 Error limits as per NAMUR NE 43

In Mode=4-20, the device can be set to error limits as per NAMUR NE 43 \rightarrow \cong 43.

The device displays an error message if a value is outside these limits.

Current value	Error	Diagnostic code
≤ 3.6 mA	Under range	F100
3.6 mA < x ≤ 3.8 mA	Unpermitted measured value	S901
20.5 mA ≤ x < 21.0 mA	Unpermitted measured value	S902
> 21.0 mA	Over range	F100

9.2 Diagnostic messages

If several errors are pending simultaneously, the device always displays the error with the highest priority.

1 = Highest priority

Diagnostic number	Short text	Corrective measure	Status signal	Diagnostic behavior	Priority	
		Diagnostics for the sensor				
F100	Sensor error	Check electrical wiringCheck sensorCheck sensor settings	F	Alarm	6	
S901	Input signal too small	 Check transmitter output for defect and conformity error Check transmitter for incorrect configuration 	S	Warning	4	
S902	Input signal too large	_	S	Warning	5	
		Diagnostics for the electronics	<u> </u>			
F261	Electronics module	Replace electronics	F	Alarm	1	
F283	Memory content	Restart deviceReset deviceReplace electronics	F	Alarm	2	
F431	Factory calibration	Replace electronics	F	Alarm	3	
Diagnostics for the configuration						
M561	Display overshoot	Check scaling	M	Warning	7	

Display "UCxxx" instead of HART® unit 9.2.1

By default, the unit of the transmitted measured value is automatically read out and displayed using a HART® command. If the transmitted "unit code" cannot be uniquely assigned by the RIA15, the unit code (UCxxx) is displayed instead of the unit.

To remedy this, the unit must be set manually. (SETUP => HART => HART1-4 => UNIT1-4 => TEXT1-4).

For the affected units, see \rightarrow \blacksquare 74

CM82 special case:

RIA15 Troubleshooting

> The unit codes 170 to 219 are assigned multiple times as per the HART® specification. As the UC170 is also used with the CM82, the unit must be assigned manually. This applies to the following measured values/units:

PV (TEXT1):

Transmitter parameter	Primary value (CMAIN)	Unit
рН	Leak current (LEAKC)	nA
рН	Glass impedance (IMPGL)	MOhm
Dissolved oxygen	Liquid concentration (C_LIQ)	mg/l
Dissolved oxygen	Raw value of sensor (CURR)	nA

QV (TEXT4):

Transmitter parameter	Sensor type	Unit
pH	Glass	MOhm
pH	IsFET	nA

9.2.2 HART® diagnostic messages

If several errors are pending simultaneously, the device always displays the error with the highest priority.

1 = Highest priority

Diagnostic number	Short text	Corrective measure	Status signal	Diagnostic behavior	Priority
F960	HART® communication (slave not responding)	 Verify HART slave address Check electrical wiring (HART®) Check HART® function sensor/actor 	F	Alarm	8
C970	Multi-master collision	 Check additional master in the HART® network (e.g. handheld). Check master setting (secondary/primary) 	С	Check	9
F911	HART® slave device error (HART® Field Device Status)	Check sensor/actor configuration or check for defects	F	Alarm	10
S913	HART® slave current output saturated (HART® Field Device Status)	 Commissioning: Check sensor/actor for incorrect configuration, check sensor/actor configuration Operation: Process parameter outside valid range 	S	Warning	11
S915	HART® slave variable outside limits of range (HART® Field Device Status)		S	Warning	12

RIA15 Troubleshooting

9.2.3 Other diagnostics in the HART® mode

The process indicator has an integrated HART® diagnostics function. This function can be used to estimate the HART® signal level, the applicable communication resistance, and the noise of the network.

The indicator can measure and display the following values:

Parameters	Description	User interface	
Tx mV	Process indicator signal level	mV	Peak-to-peak level of the transmission signal
Rx mV	Slave signal level	mV	Peak-to-peak level of the received signal
NOISE	Weighting of the interference signal	LO / MED / HI	Categorization of the interference into low, medium or high
Rc Ω	Effective communication resistance	Ω	Resistance in Ohm

The values can be called up in the EXPRT – DIAG – HLEVL menu.

Measuring the transmission signal level "Tx":

The Tx measurement can be used to assess the signal level of the transmission signal. Ideally this should be between 200 mV and 800 mV. The following values are displayed:

Tx	< 120 mV	120 to 200 mV	200 to 800 mV	800 to 850 mV	> 850 mV
Display	LO	Level in mV			HI
Bargraph	<	<	>		

Measuring the received signal level "Rx":

The Rx measurement can be used to assess the signal level of the received signal. Ideally this should be between 200 mV and 800 mV .

The Rx signal value that is displayed is a filtered signal level as assessed by the process indicator. In this way, the value measured externally and the displayed value can differ from one another, for example in the case of a trapezoidal received signal.

The following values are displayed:

Rx	< 120 mV	120 to 200 mV	200 to 800 mV	800 to 850 mV	> 850 mV
Display	LO		HI		
Bargraph	<	<	>		

Measuring the "NOISE" interference signal:

When the interference signal level is measured, the interference signal determined is divided into three categories:

LO = low

MED = medium

HIGH = high

The noise measurement is also a filtered signal level as assessed by the process indicator. The value measured externally and the displayed value can therefore differ from one another, depending on the frequency and the form of the signal.

With low wanted signal levels (Rx, Tx), transmission errors can occur even if the interference signal level is low ("LO" displayed).

Troubleshooting RIA15

Measuring the communication resistance "Rc":

The "Rc" measurement can be used to determine the network resistance of the HART® network. Ideally this should be between 230 Ω and 600 Ω .

The network resistance is the sum of the HART® communication resistance, the device's input resistance, the transmission line resistance and line capacitance.

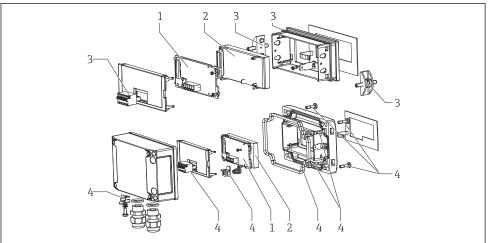
The following values are displayed:

Rc	< 100 Ω	100 to 230 Ω	230 to 600 Ω	600 to 1000 Ω	> 1000 Ω
Display	LO	Resistance in Ω			HI
Bargraph	<	< . -	0 to 100 %	>	>

9.2.4 Error messages during basic configuration of connected transmitters

While configuring connected transmitters, it may happen that the transmitter responds with a response code not equal to 0. In this case, the response code is displayed briefly on the process indicator ("RC XX"). The current setting on the transmitter is then retrieved again and displayed on the process indicator.

The meaning of the response codes is explained in the following table.


Code	Description	Solution
RC 02	Invalid selection	Check HART® setting and firmware in the connected transmitter
RC 03	Value too large	Check basic settings for the connected transmitter $\Rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
RC 04	Value too small	Check basic settings for the connected transmitter $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
RC 05	Not enough data bytes received	Check HART® setting and firmware in the connected transmitter
RC 06	Device-specific command error	Check HART® setting and firmware in the connected transmitter
RC 07	In the write-protected mode	Check write protection in the connected transmitter
RC 14	Span too small	Check basic settings for the connected transmitter $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
RC 16	Access restricted	Check HART® setting and firmware in the connected transmitter
RC 29	Invalid span	Check basic settings for the connected transmitter $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
RC 32	Busy	Try to establish communication again

9.2.5 Other error messages that may occur during configuration

Code	Description	Solution
F960	HART communication error	Check HART communication: Communication resistance Signal level Faults
		Sensor version
F013	CM82 transmitter/sensor type is not supported by the RIA15	Connect a supported transmitter/sensor type

RIA15 Troubleshooting

9.3 Spare parts

A0018883

■ 24 Spare parts of the process indicator

Item No.	Description	Order number
1	Mainboard HART® Mainboard HART® with Level option (FMX21, FMR20) Mainboard HART® with Analysis option (CM82)	XPR0005-ABA XPR0005-ACA XPR0005-ADA
2	LCD module	XPR0006-A1
3	Small parts set for panel-mount housing (5-pin plug-in terminal, seal on front frame, 2x fastening clip)	XPR0006-A2
4	Small parts set for field housing (5-pin plug-in terminal, seal on cover, 2x cover hinge, grounding connection on bottom, cover screws, grounding lug)	XPR0006-A3
4	Cable gland with integrated pressure compensation membrane (for FMX21)	RK01

9.4 Software history and overview of compatibility

Release

The firmware version on the nameplate and in the Operating Instructions indicates the device release: XX.YY.ZZ (example 1.02.01).

XX	Change to main version. No longer compatible. The device and Operating Instructions change.
YY	Change to functions and operation. Compatible. The Operating Instructions change.
ZZ	Fixes and internal changes. No changes to the Operating Instructions.

Date	Firmware Version	Software changes	Documentation
03/2013	1.01.00	HART® option	BA01170K/09/EN/02.13
07/2013	1.02.00	HART® level measurement	BA01170K/09/EN/03.13
11/2014	1.03.00	New EXP1-EXP4 parameter for HART® option	BA01170K/09/EN/04.14

Maintenance RIA15

Date	Firmware Version	Software changes	Documentation
05/2016	1.04.00	New menus and parameters in "FMR20 basic commissioning"	BA01170K/09/EN/05.15
04/2018	ISU00XA (standard): 1.05.01 ISU01XA (CM82): 1.05.01	New menus and parameters "FMX21 / CM82 basic commissioning"	BA01170K/09/EN/06.18
08/2019	ISU00XA (Standard): 1.06.xx ISU03XA (NMS8x): 1.06.xx	New menus and parameters in "FMG50/ NMS8x basic commissioning"	BA01170K/09/EN/07.19

10 Maintenance

No special maintenance work is required on the device.

11 Return

The requirements for safe device return can vary depending on the device type and national legislation.

- 1. Refer to the website for more information: http://www.endress.com/support/return-material
- 2. Return the device if repairs or a factory calibration are required, or if the wrong device was ordered or delivered.

12 Disposal

12.1 IT security

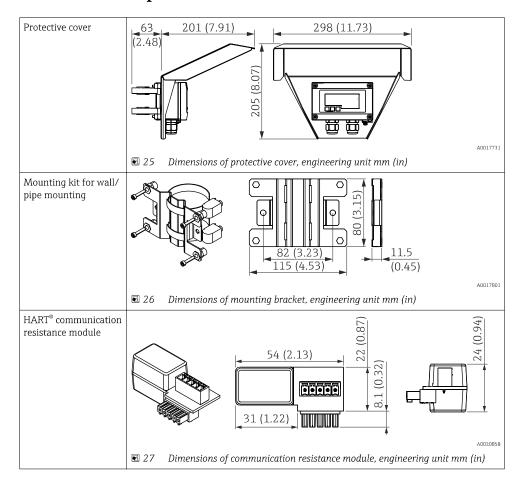
Observe the following instructions before disposal:

- 1. Delete data
- 2. Reset the device
- 3. Delete/change passwords
- 4. Delete users
- 5. Carry out alternative or complementary measures to destroy the storage medium

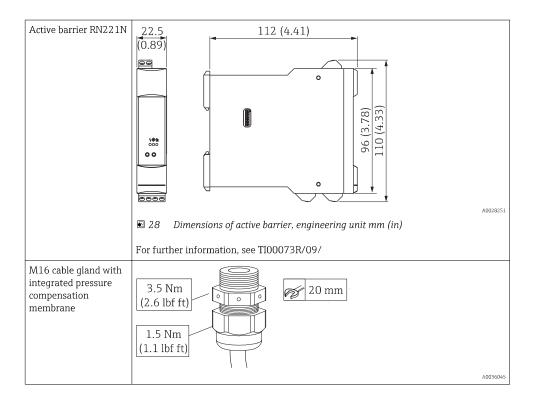
12.2 Disassembling the measuring device

- 1. Switch off the device
- 2. Carry out the mounting and connection steps from the "Mounting the measuring device" and "Connecting the measuring device" sections in reverse order. Observe the safety instructions.

12.3 Disposing of the measuring device


- Observe the following notes during disposal:
 - Observe valid federal/national regulations.
 - Ensure proper separation and reuse of the device components.

RIA15 Accessories


13 Accessories

Various accessories, which can be ordered with the device or subsequently from Endress +Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

13.1 Device-specific accessories

Accessories RIA15

13.2 Service-specific accessories

Accessories	Description
Applicator	Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all the necessary data for identifying the optimum measuring device: e.g. pressure loss, accuracy or process connections. Graphic indication of the calculation results
	Administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.
	Applicator is available: • Via the Internet: https://wapps.endress.com/applicator • On CD-ROM for local PC installation.
W@M	Life cycle management for your plant W@M supports you with a wide range of software applications over the entire process: from planning and procurement, to the installation, commissioning and operation of the measuring devices. All the relevant device information, such as the device status, spare parts and device-specific documentation, is available for every device over the entire life cycle. The application already contains the data of your Endress+Hauser device. Endress+Hauser also takes care of maintaining and updating the data records. W@M is available: Via the Internet: www.endress.com/lifecyclemanagement On CD-ROM for local PC installation.

RIA15 Technical data

14 Technical data

14.1 Input

Voltage drop	
Standard device with 4 to 20 mA communication	≤ 1.0 V
Device with HART® communication	≤ 1.9 V
Display lighting additionally 2.9 V	

HART® input impedance	
$Rx = 40 \text{ k}\Omega$	
Cx = 2.3 nF	

Measured variable

The input variable is either the 4 to 20 mA current signal or the $HART^{\circ}$ signal.

HART® signals are not affected.

Measuring range

4 to 20 mA (scalable, reverse polarity protection)

Max. input current 200 mA

14.2 Power supply

Supply voltage

NOTICE

SELV/Class 2 device

► The device may only be powered by a power unit with an energy-limited circuit according to UL/EN/IEC 61010-1 Section 9.4 or Class 2 according to UL 1310: 'SELV or Class 2 circuit'.

The process indicator is loop-powered and does not require any external power supply. The voltage drop is ≤ 1 V in the standard version with 4 to 20 mA communication, ≤ 1.9 V with HART® communication and an additional 2.9 V if display lighting is used.

14.3 Performance characteristics

Reference operating conditions

Reference temperature 25 °C \pm 5 °C (77 °F \pm 9 °F)

Humidity 20 to 60 % relative humidity

Maximum measured error

Input	Range	Measured error of measuring range
Current	4 to 20 mA Over range up to 22 mA	±0.1 %

Resolution Signal resolution > 13 bit

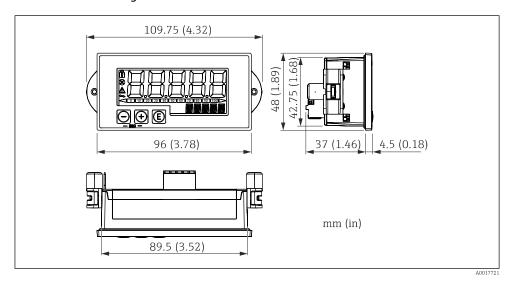
Influence of ambient temperature

 $< 0.02 \%/K (0.01 \%)^{\circ}$ of measuring range

Technical data RIA15

Warm-up period	10 minutes
	14.4 Installation
Mounting location	Panel housing
	The device is designed for use in a panel.
	Required panel cutout 45x92 mm (1.77x3.62 in)
	Field housing
	The field housing version is designed for use in the field. The unit is mounted directly on a wall, or on a pipe with a diameter of up to 2 "with the aid of an optional mounting bracket. An optional weather protection cover protects the device from the effects of weather conditions.
Orientation	Panel housing
	The orientation is horizontal.
	Field housing
	The device must be mounted in such a way that the cable entries point downwards.
	14.5 Environment
Ambient temperature	−40 to 60 °C (−40 to 140 °F)
range	At temperatures below -25°C (-13°F) the readability of the display can no longer be guaranteed.
Storage temperature	−40 to 85 °C (−40 to 185 °F)
Climate class	IEC 60654-1, Class B2
Operating altitude	Up to 5 000 m (16 400 ft) above MSL in accordance with IEC61010-1
Degree of protection	Panel housing
	IP65 at front, IP20 at rear
	Field housing
	Aluminum housing: degree of protection IP66/67, NEMA 4x
	Plastic housing: degree of protection IP66/67
Electromagnetic compatibility	 Interference immunity: As per IEC61326 (Industrial Environments) / NAMUR NE 21 Maximum measured error < 1 % o. MR Interference emission: As per IEC61326, Class B

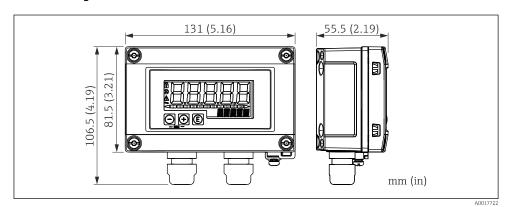
RIA15 Technical data


Electrical safety

Class III, overvoltage protection category II, pollution degree 2

14.6 Mechanical construction

Design, dimensions


Panel-mount housing

■ 29 Dimensions of the panel housing

Required panel cutout 45x92 mm (1.77x3.62 in), max. panel thickness 13 mm (0.51 in).

Field housing

 \blacksquare 30 Dimensions of the field housing incl. cable entries (M16)

Weight

Panel-mount housing

115 g (0.25 lb.)

Field housing

Aluminum: 520 g (1.15 lb)Plastic: 300 g (0.66 lb)

Technical data RIA15

Materials Panel-mount housing

Front: aluminum

Rear panel: polycarbonate PC

Field housing

Aluminum or plastic (PBT with steel fibers, antistatic)

14.7 Operability

Local operation

The device is operated with the 3 operating keys on the front of the housing. The device setup can be disabled with a 4-digit user code. If the setup is disabled, a padlock symbol appears on the display when an operating parameter is selected.

14.8 Certificates and approvals

CE mark	The product meets the requirements of the harmonized European standards. As such, it complies with the legal specifications of the EC directives. The manufacturer confirms successful testing of the product by affixing to it the CE-mark.
EAC mark	The product meets the legal requirements of the EEU guidelines. The manufacturer confirms the successful testing of the product by affixing the EAC mark.
Ex approval	Information about currently available Ex versions (ATEX, FM, CSA, etc.) can be supplied by your E+H Sales Center on request. All explosion protection data are given in a separate documentation which is available upon request.
Functional safety	SIL interference freeness according to EN61508 (optional)
Marine approval	Marine approval (optional)
HART® communication	The indicator is registered by the HART $^{\circ}$ Communication Foundation. The device meets the requirements of the HART $^{\circ}$ Communication Protocol Specifications, May 2008, Revision 7.1. This version is downwards compatible with all sensors/actuators with HART $^{\circ}$ versions ≥ 5.0 .

RIA15 Technical data

Other standards and guidelines

■ IEC 60529:

Degrees of protection provided by enclosures (IP code)

■ IEC 61010-1: 2010 cor 2011
Safety requirements for electrical equipment for measurement, control and laboratory use

NAMUR NE21, NE43
 Association for Standards for Control and Regulation in the Chemical Industry

HART® communication RIA15

15 HART® communication

 ${\rm HART}^{\circ}$ (Highway Addressable Remote Transducer) is an established global industry standard, which has been tried and tested in the field and has an installed base of over 14 million devices.

<code>HART®</code> is a "smart" technology which enables 4 to 20 mA analog transmission and digital communication to occur simultaneously along the same wire pair. With HART®, transmission is based on the Bell 202 Frequency Shift Keying standard (FSK). A high-frequency wave (± 0.5 mA) is superimposed on the low-frequency analog signal (4 to 20 mA). Maximum transmission distances depend on the network structure and ambient conditions.

In many applications, the HART® signal is used only for configuration purposes. However, with the appropriate tools, HART® can be used for device monitoring, device diagnosis and for recording multivariable process information.

The HART® protocol is based on the master/slave principle. This means that during normal operation, all communication is initiated by the master. Unlike other master-slave communication types, HART® permits two masters in one loop/network: a primary master, e.g. the distributed control system, and a secondary master, e.g. a handheld terminal. However, two masters of the same type are not permitted simultaneously. Secondary master devices can be used without affecting communication to and from the primary master. The field devices are generally the HART® slaves and respond to HART® commands from the master that are addressed directly to them or to all devices.

The HART® specification stipulates that the masters transmit a voltage signal, while the sensors/actuators (slaves) convey their messages using load-independent currents. The current signals are converted to voltage signals at the internal resistor of the receiver (load).

To ensure reliable signal reception, the HART® protocol specifies that the total load of the current loop - including cable resistance - must be between a minimum of 230 Ω and a maximum of 600 $\Omega.$ If the resistance is less than 230 $\Omega,$ the digital signal is greatly attenuated or short-circuited. Therefore, a HART® communication resistor is always required in the 4 to 20 mAcable in the case of a low-impedance power supply.

15.1 HART® protocol command classes

Each command is assigned to one of the following three classes:

- Universal commands are supported by all devices using the HART[®] protocol (e.g. device tag, firmware no. etc.).
- Common practice commands
 offer functions that are supported by many but not by all HART® instruments (e.g. read
 out value, set parameter etc.)
- Device-specific commands
 provide access to device data that are not HART® standard but are unique to a particular
 device model (e.g. linearization, advanced diagnostic functions)

Since the HART® protocol is an open communication protocol between the control device and the field device, it can be implemented by any manufacturer and freely applied by the user. The necessary technical support is provided by the HART® Communication Foundation (HCF).

RIA15 HART® communication

15.2 HART® commands used

The process indicator uses the following HART® universal commands:

Universal command number	Response data used		
0 Unique device identifier	The device identifier provides information on the device and manufacturer; it cannot be changed. The response comprises a 12-byte device ID.		
	The following bytes are used by the process indicator: Byte 0: fixed value 254 Byte 2: device type ID, for slave addressing with long address format Byte 3: number of preambles Byte 9-11: device identification, for slave addressing with long address format		
Read the primary process variable as current in mA and the percentage value based on the current range	The response comprises 8 bytes: Byte 0-3: current in mA Byte 4-7: percentage value		
Read the primary process variable as current in mA and four dynamic process variables	The response comprises 24 bytes: The following bytes are used by the process indicator: Byte 4: HART® unit code of the primary process variable Byte 5-8: primary process variable Byte 9: HART® unit code of the secondary process variable Byte 10-13: secondary process variable Byte 14: HART® unit code of the third process variable Byte 15-18: third process variable Byte 19: HART® unit code of the fourth process variable Byte 20-23: fourth process variable		

The universal commands used by the process indicator must be supported by the slaves to guarantee proper communication.

15.3 Field device status

The field device status is contained in the second data byte of a slave/actuator response.

The following bits are analyzed by the process indicator and displayed as a diagnostic message:

Bit mask	Definition	Used in the process indicator
0x80	Device error function – The device has detected a serious error or an error function which affects the operation of the device.	Diagnostic F911
0x40	Configuration changed – A function was executed which has changed the device configuration.	No
0x20	Cold start – The supply voltage has failed or a device reset has occurred.	No
0x10	Additional status available – Additional status information is available via command #48.	No
0x08	Loop current fixed – The loop current is maintained at a fixed value and does not react to changes in the process.	No
0x04	Loop current saturated – The loop current has reached its upper (or lower) limit point and cannot increase (decrease) further.	Diagnostic S913
0x02	Non-primary variable out of limits.	Diagnostic S915
0x01	Primary variable out of limits.	Diagnostic S915

HART® communication RIA15

15.4 Supported units

If "HART" is configured in the UNIT1-4 parameter, the units are automatically read out and displayed by the transmitter.

However, if the transmitted unit cannot be clearly displayed, the HART-UnitCode "UCxxx" is displayed instead, with xxx standing for the unit code number.

In this case, a self-defined text can be specified for the unit via the TEXT1-4 parameter.

Unit code	Description	Display text
1	Inches of water at 68 °F	inH2O
2	Inches of mercury at 0 °C	inHG
3	Feet of water at 68 °F	FTH2O
4	Millimeters of water at 68 °F	mmH2O
5	Millimeters of mercury at 0 °C	mmHG
6	Pounds per square inch	PSI
7	Bar	BAR
8	Millibars	mBAR
9	Grams per square centimeter	g/cm2
10	Kilograms per square centimeter	UC010
11	Pascals	Pa
12	Kilopascals	kPa
13	Torr	TORR
14	Atmospheres	ATM
15	Cubic feet per minute	UC015
16	Gallons per minute	UC016
17	Liters per minute	l/min
18	Imperial gallons per minute	UC018
19	Cubic meters per hour	m3/h
20	Feet per second	FT/S
21	Meters per second	m/S
22	Gallons per second	gal/S
23	Million gallons per day	MGD
24	Liters per second	1/S
25	Million liters per day	MLD
26	Cubic feet per second	FT3/S
27	Cubic feet per day	FT3/d
28	Cubic meters per second	m3/S
29	Cubic meters per day	m3/d
30	Imperial gallons per hour	UC030
31	Imperial gallons per day	UC031
32	Degrees Celsius	°C
33	Degrees Fahrenheit	°F
34	Degrees Rankine	°R
35	Kelvin	K
36	Millivolts	mV

Unit code	Description	Display text
37	Ohms	Ohms
38	Hertz	HZ
39	Milliamperes	mA
40	Gallons	gal
41	Liter	LITERS
42	Imperial gallons	Igal
43	Cubic meters	m3
44	Feet	FEET
45	Meters	METER
46	Barrels	bbl
47	Inches	inch
48	Centimeters	cm
49	Millimeters	mm
50	minutes	min
51	Seconds	SEC
52	Hours	HOUR
53	Days	DAY
54	Centistokes	cST
55	Centipoises	cP
56	Microsiemens	uS
57	Percent	%
58	Volts	VOLT
59	рН	PH
60	Grams	g
61	Kilograms	Kg
62	Metric tons	Т
63	Pounds	lb
64	American tons	TN SH
65	British tons	TN L
66	Millisiemens per centimeter	mS/cm
67	Microsiemens per centimeter	uS/cm
68	Newton	N
69	Newton meters	Nm
70	Grams per second	g/S
71	Grams per minute	g/min
72	Grams per hour	g/h
73	Kilograms per second	Kg/S
74	Kilograms per minute	Kg/mi
75	Kilograms per hour	Kg/h
76	Kilograms per day	Kg/d
77	Metric tons per minute	T/min
78	Metric tons per hour	T/h
79	Metric tons per day	T/d

HART® communication RIA15

Unit code	Description	Display text	
80	Pounds per second		
81	Pounds per minute	lb/mi	
82	Pounds per hour	lb/h	
83	Pounds per day	lb/d	
84	American tons per minute	TnS/m	
85	American tons per hour	TnS/h	
86	American tons per day	TnS/d	
87	British tons per hour	Tnl/h	
88	British tons per day	Tnl/d	
89	Deka therm	dTh	
90	Specific gravity units	UC090	
91	Grams per cubic centimeter	g/cm3	
92	Kilograms per cubic meter	Kg/m3	
93	Pounds per gallon	lb/ga	
94	Pounds per cubic feet	lb/F3	
95	Grams per milliliter	g/ml	
96	Kilograms per liter	Kg/l	
97	Grams per liter	g/l	
98	Pounds per cubic inch	lb/ci	
99	American tons per cubic yard	UC099	
100	Degrees Twaddell	°Tw	
101	Degrees Brix	°BX	
102	Degrees Baumé heavy	UC102	
103	Degrees Baumé light	UC103	
104	Degrees API	°API	
105	Percent solids per weight	%wT	
106	Volume percent	%VOL	
107	Degrees Balling	°bal	
108	Proof per volume	P/VOL	
109	Proof per mass	P/maS	
110	Bushels	bSh	
111	Cubic yards	YARD3	
112	Cubic feet	FEET3	
113	Cubic inches	inch3	
114	Inches per second	in/S	
115	Inches per minute	in/mi	
116	Feet per minute	F/min	
117	Degrees per second	DEG/S	
118	Revolutions per second	RPS	
119	Revolutions per minute	RPM	
120	Meters per hour	m/h	
121	Normal cubic meters per hour	Nm3/h	
122	Normal liters per hour	Nl/h	
	<u> </u>		

Unit code	Description	Display text		
123	Normal cubic feet per minute			
124	Fluid barrel (1 barrel = 31.5 U.S. gallons)	UC124		
125	Ounces	ouncE		
126	Foot Pound Force	FTLBF		
127	Kilowatts	kW		
128	Kilowatt hours	kWh		
129	Horse power	HP		
130	Cubic feet per hour	FT3/h		
131	Cubic meters per minute	m3/mi		
132	Barrels per second	bbl/S		
133	Barrels per minute	bbl/m		
134	Barrels per hour	bbl/h		
135	Barrels per day	bbl/d		
136	Gallons per hour	gal/h		
137	Imperial gallons per second	UC137		
138	Liters per hour	l/h		
139	Parts per million	PPm		
140	Mega calories per hour	UC140		
141	Mega joules per hour	mJ/h		
142	British Thermal Units per hour	BTU/h		
143	Degrees	DEG		
144	Radian	rad		
145	Millimeters of water at 60 °F	inH2O		
146	Micrograms per liter	ug/l		
147	Micrograms per cubic meter	ug/m3		
148	Percent consistency	%con		
149	Volume percent	VOL%		
150	Percent steam quality	%SQ		
151	Feet inch sixteenths	UC151		
152	Cubic feet per pound	F3/lb		
153	Picofarads	PF		
154	Milliliters per liter	ml/l		
155	Microliters per liter	ul/l		
156-159	Unit Code Expansion Tables	UC156 - UC159		
160	Percent Plato	%P		
161	Percent lower explosion level	%LEL		
162	Mega calories	Mcal		
163	Kilo ohms	КОНМ		
164	Mega joules	MJ		
165	British Thermal Unit	BTU		
166	Standard cubic meters	Nm3		
167	Normal liters	Nl		

HART® communication RIA15

Unit code	Description	Display text
168	Normal cubic feet	SCF
169	Parts per billion	PPb
170 - 219	Unit Code Expansion Tables See Operating Instructions of connected transmitter / sensor. For CM82: see $\rightarrow \blacksquare 59$	UC170 - UC219
220 - 234	not defined	UC220 - UC234
235	Gallons per day	gal/d
236	Hectoliters	hl
237	Megapascals	МРа
238	Inches of water at 4 °C	inH2O
239	Millimeters of water at 4 °C	mmH2O
240 - 249	Manufacturer-specific	UC240 - UC249
250	Not used	
251	None	
252	Unknown	UC252
253	Special	UC253

HART® protocol connection types 15.5

The HART protocol can be used for point-to-point and Multidrop connections:

Point to point (TYPICAL)

In a point-to-point connection, the HART® master communicates with precisely one HART® slave.

A point-to-point connection should always be the preferred option where possible.

Multidrop (measurement not by current, slower)

In Multidrop mode, several HART® devices are incorporated in a single current loop. Analog signal transmission is disabled in this case and the data and measured values are exchanged exclusively via the HART® protocol. The current output of each connected device is set to a fixed value of 4 mA and is used only to supply power to the two-wire

Using Multidrop, several sensors/actuators can be connected in parallel to one wire pair. The master then differentiates between devices based on the configured addresses. Each device must have a different address. When more than seven sensors/actuators are connected in parallel, an increased voltage drop occurs.

The loop must not include a mixture of devices with an active current output (e.g. fourwire devices) and devices with a passive current output (e.g. two-wire devices).

The HART® protocol is a form of communication that is not susceptible to interference. This means that, during operation, communication devices can be connected or removed without putting components of the other devices at risk or interrupting their communication.

RIA15 HART® communication

15.6 Device variables for multivariable measuring devices

Multivariable measuring devices can transmit up to four device variables via HART®: the primary variable (PV), the secondary variable (SV), the tertiary variable (TV) and the quarternary variable (QV).

Below you will find some examples of what default values can be set for these variables for various sensors/actuators:

Flowmeter, e.g. Promass:

- Primary process variable (PV) -> Mass flow
- Secondary process variable (SV) -> Totalizer 1
- Third process variable (TV) -> Density
- Fourth process variable (QV) -> Temperature

Temperature transmitter, e.g. TMT82:

- Primary process variable (PV) -> Sensor 1
- Secondary process variable (SV) -> Device temperature
- Third process variable (TV) -> Sensor 1
- Fourth process variable (QV) -> Sensor 1

For a level measuring device such as the Levelflex FMP5x, these four values can be as follows:

Level measurement:

- Primary process variable (PV) → Level linearized
- Secondary process variable (SV) → Distance
- Third process variable (TV) → Absolute echo amplitude
- Fourth process variable (QV) \rightarrow Relative echo amplitude

Interface measurement:

- Primary process variable (PV) → Interface
- Third process variable (TV) \rightarrow Upper interface thickness
- Fourth process variable $(QV) \rightarrow Relative$ interface amplitude

HART® actuator, e.g. positioner:

- Primary process variable (PV) -> Actuating value
- Secondary process variable (SV) -> Valve set point
- Third process variable (TV) -> Target position
- Fourth process variable (QV) -> Valve position

Index RIA15

Index

C CE mark
_
D Declaration of Conformity 7 Diagnostic messages 59 HART® 60 HART® signal 61 Display "UCxxx" 59 HART® 59 Document 4 Document function 4 Document function 4
F
Functional grounding Field device
H HART [®] communication resistance module
[Installing HART communication resistance module Field housing
0 Operational safety
P Product safety
R Requirements for personnel
U Units Supported HART [®] units
W Workplace safety

